Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T02:55:33.892Z Has data issue: false hasContentIssue false

The effect of grinding and pelleting on the digestion of Italian ryegrass and timothy by sheep

Published online by Cambridge University Press:  09 March 2007

D. E. Beever
Affiliation:
The Grassland Research Institute, Hurley Maidenhead, Berkshire SL6 5LR
D. F. Osbourn
Affiliation:
The Grassland Research Institute, Hurley Maidenhead, Berkshire SL6 5LR
S. B. Cammell
Affiliation:
The Grassland Research Institute, Hurley Maidenhead, Berkshire SL6 5LR
R. A. Terry
Affiliation:
The Grassland Research Institute, Hurley Maidenhead, Berkshire SL6 5LR
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Primary growths of Italian ryegrass and timothy were harvested in late May, high-temperature dried and either retained in the chopped form or ground through a 2 mm sieve and pelleted. All diets were fed to four sheep fitted with re-entrant cannulas into the proximal duodenum and measurements of the sites of energy and protein digestion and the synthesis of volatile fatty acids (VFA) and microbial protein were made.

2. Grinding and pelleting significantly reduced rumen digestion of organic matter and structural carbohydrate(P < 0·05) and the synthesis of rumen VFA (P < 0·01), whilst significantly more digestion occurred in the hind gut, although this was not sufficient to prevent a decline in over-all digestibility on the pelleted diets (P < 0·05). The magnitude of all responses was much larger on the Italian ryegrass diet.

3. Net microbial protein synthesis was 15% less on the pelleted diets but efficiency of microbial protein synthesis was unaffected (mean 188g/kg rumen digested organic matter). Pelleting reduced the degradation of dietary protein from 69% to 47%, and dietary protein represented significantly more of the total protein flowing to the duodenum on the pelleted diets (chopped 28%, pelleted 41%).

4. Over-all, grinding and pelleting reduced total absorbed energy supply by 10% but increased absorbed protein supply by 1 5% which may contribute to some of the improvements seen, in the net energy value of pelleted dlets.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1981

References

American Society of Agricultural Engineers (1967). Yb. Am. Soc. agric. Engrs., p. 301.Google Scholar
Balch, C. C. (1950). Br. J. Nutr. 4, 361.CrossRefGoogle Scholar
Baldwin, R. L., Lucas, H. L. & Cabrera, R. (1970). In Physiology of Digestion and Metabolism in the Ruminant, p. 313 [Phillipson, A. T., editor]. Newcastle-upon Tyne: Oriel.Google Scholar
Beever, D. E., Coehlo da Silva, J. F., Prescott, J. H. D. & Armstrong, D. G. (1972). Br. J. Nutr. 28, 347.CrossRefGoogle Scholar
Beever, D. E., Harrison, D. G., Thomson, D. J., Cammell, S. B. & Osbourn, D. F. (1974). Br. J. Nutr. 32, 99.CrossRefGoogle Scholar
Beever, D. E., Terry, R. A., Cammell, S. B. & Wallace, A. S. (1978). J. agric. Sci. Camb. 90, 463.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J. & Cammell, S. B. (1976). J. agric. Sci., Camb. 86, 443.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J., Cammell, S. B. & Harrison, D. G. (1977). J. agric. Sci., Camb. 88, 61.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J. & Harrison, D. G. (1971). Proc. Nutr. Soc. 30, 86A.Google Scholar
Beever, D. E., Thomson, D. J., Pfeffer, E. & Armstrong, D. G. (1971). Br. J. Nutr. 26, 123.CrossRefGoogle Scholar
Bjarnson, J. & Carpenter, K. J. (1969). Br. J. Nutr. 23, 859.CrossRefGoogle Scholar
Bjarnson, J. & Carpenter, K. J. (1970). Br. J. Nutr. 24, 313.CrossRefGoogle Scholar
Black, J. L., Beever, D. E., Faichney, G. J., Howarth, B. R. & Graham, N.Mc. (1980/81) Agric. Systems 6, (In the Press.)Google Scholar
Blaxter, K. L. (1973). Proc. int. Congr. Green Crop DryingOxford, p. 64.Google Scholar
Blaxter, K. L., Graham, N.Mc. & Wainman, F. W. (1956). Br. J. Nutr. 10, 69.CrossRefGoogle Scholar
Brown, G. F., Armstrong, D. G. & MacRae, J. C. (1968). Br. Vet. J. 124, 78.CrossRefGoogle Scholar
Cammell, S. B. (1977). Tech. Rep. Grassld Res. Inst. No. 24.Google Scholar
Campling, R. C., Freer, M. & Balch, C. C. (1963). Br. J. Nutr. 17, 263.CrossRefGoogle Scholar
Canaway, R. J. & Thomson, D. J. (1977). Tech. Rep. Grassld Res. Inst. No. 23.Google Scholar
Christian, K. R. & Coup, M. R. (1954). N.Z. Jl. Sci. Tech. A36, 328Google Scholar
Coehlo da Silva, J. F., Seeley, R. C., Beever, D. E., Prescott, J. H. D. & Armstrong, D. G. (1972 a). Br. J. Nutr. 28, 357.CrossRefGoogle Scholar
Coehlo da Silva, J. F., Seeley, R. C., Thomson, D. J., Beever, D. E. & Armstrong, D. G. (1972 b). Br. J. Nutr. 28, 43.CrossRefGoogle Scholar
Egan, A. R. & Walker, D. J. (1975). Proc. 3rd Wld. Conf. Anim. Prod.Melbourne, p. 551.Google Scholar
Harrison, D. G. (1974). Newslett. appl. Nucl. Meth. Biol. Agric. no. 3, p. 8.Google Scholar
Heaney, D. P., Pidgen, W. J., Minson, D. J. & Pritchard, G. I. (1963). J. Anim. Sci. 22, 752.CrossRefGoogle Scholar
Jarrige, R., Demarquilly, C., Journet, M. & Berranger, C. (1973). Proc. 1st int. Congr. Green Crop DryingOxford, p. 99.Google Scholar
MacRae, J. C. & Armstrong, D. G. (1969). Br. J. Nutr. 23, 15.CrossRefGoogle Scholar
Maeng, W. J. & Baldwin, R. L. (1975). J. Dairy Sci. 59, 643.CrossRefGoogle Scholar
Moore, L. A. (1964). J. Anim. Sci. 23, 230.CrossRefGoogle Scholar
Moore, S. (1963). J. biol. Chem. 238, 235.CrossRefGoogle Scholar
Morant, S. V., Ridley, J. L. & Sutton, J. D. (1978). Br. J. Nutr. 39, 451CrossRefGoogle Scholar
Osbourn, D. F., Terry, R. A., Outen, G. E. & Cammell, S. B. (1976). Proc. 12th int. Grassld Congr.Moscow, sect. 5, p. 514.Google Scholar
Osbourn, D. F., Terry, R. A., Spooner, M. C. & Tetlow, R. M. (1981). Anim. Sci. Fd Technol. (In the Press.)Google Scholar
Outen, G. E., Beever, D. E., Osbourn, D. F. & Thomson, D. J. (1975). J. Sci. Fd Agric. 26, 1381.CrossRefGoogle Scholar
Rodriguez, C. B. & Allen, N. N. (1960). Can. J. Anim. Sci. 40, 23.CrossRefGoogle Scholar
Thomson, D. J., Beever, D. E., Coehlo da Silva, J. F. & Armstrong, D. G. (1972). Br. J. Nutr. 28, 31.CrossRefGoogle Scholar
Thomson, D. J., Beever, D. E., Latham, M. J., Sharpe, M. E. & Terry, R. A. (1978). J. agric. Sci., Camb. 91, 1.CrossRefGoogle Scholar
Thomson, D. J. & Cammell, S. B. (1979). Br. J. Nutr. 41, 297.CrossRefGoogle Scholar
Van Soest, P. J. (1963). J. Ass. off. agric. Chem. 46, 825.Google Scholar
Van Soest, P. J. & Wine, R. H. (1967). J. Ass. off. Analyt. Chem. 50, 50.Google Scholar
Wainman, F. W. & Blaxter, K. L. (1972). J. agric. Sci., Camb. 79, 435.CrossRefGoogle Scholar
Weller, R. A., Gray, F. V., Pilgrim, A. F. & Jones, G. B. (1967). Aust. J. agric. Res. 18, 107.CrossRefGoogle Scholar
Wilkins, R. J. (1969). J. agric. Sci., Camb. 73, 57.CrossRefGoogle Scholar