Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-10T19:44:18.978Z Has data issue: false hasContentIssue false

Effect of ethanol on rat liver

4.* The influence of vitamins, electrolytes and amino acids on the structure and function of mitochondria from rats receiving ethanol

Published online by Cambridge University Press:  09 March 2007

K.-H. Kiessling
Affiliation:
Department of Cell Physiology, the Psychiatric Clinic, St Göran's Hospital, Stockholm, Sweden
L. Pilström
Affiliation:
Department of Cell Physiology, the Psychiatric Clinic, St Göran's Hospital, Stockholm, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Feeding rats with a 15% ethanol solution for several weeks caused structural and functional changes in their liver mitochondria, although their intake of solid food was about the same as that of the controls.

2. Attempts were made to counteract these effects of ethanol by increasing the intake of amino acids, vitamins, lipotropic compounds and electrolytes beyond that which is adequate when water is the drinking fluid.

3. An increased intake of nicotinic acid, together with aqueous ethanol, caused a further enlargement of the mitochondria above that obtained with ethanol solution alone. the diluted matrix observed with the ethanol and nicotinic acid treatment suggested that water imbibition by the mitochondria caused this further enlargement.

4. In rats receiving ethanol fortified with magnesium sulphate and lipotropic compounds (choline, methionine) there was a further increase in mitochondrial size, as compared with those receiving ethanol alone. The matrix was, however, of the same density as in the mitochondria from the rats receiving ethanol alone. the oxidation rate of pyruvate and succinate was unchanged, but α-glycerophosphate and β-hydroxybutyrate were oxidized at a higher rate than in mitochondria from rats drinking ethanol or water.

5. When the ethanol solution was supplemented with amino acids (casein hydrolysate), vitamins and electrolytes, the mitochondrial enlargement after 120 days of treatment was less than with ethanol alone and was completely absent after 300 days. the oxidation rate of pyruvate and succinate was, however, not fully restored to normal.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1967

References

Baumann, C. A., Foster, E. G. & Moore, P. R. (1942). J. biol. Chem. 142, 597.CrossRefGoogle Scholar
Best, C. H., Hartroft, W. S., Lucas, C. C. & Ridout, J. H. (1949). Br. med. J. ii, 1001.CrossRefGoogle Scholar
Biran, L. A., Bartley, W., Carter, C. W. & Renshaw, A. (1965). Biochem. J. 94, 247.CrossRefGoogle Scholar
Butler, R. F. & Sarret, H. D. (1948). J. Nutr. 35, 535.CrossRefGoogle Scholar
Carlson, L. A. & Orö, L. (1962). Acta med. scand. 172, 641.CrossRefGoogle Scholar
Cleland, K. W. & Slater, E. C. (1953). Biochem. J. 53, 547.CrossRefGoogle Scholar
Erkki, O., Konttinen, K. & Suomalainen, H. (1963). Acta physiol. scand. 59, suppl. 213, p. 119.Google Scholar
Ernster, L. & Löw, H. (1955). Expl Cell Res. suppl. 3, p. 133.Google Scholar
Heaton, F. W., Pyrah, L. N., Beresford, C. C., Bryson, R. W. & Martin, D. F. (1962). Lancet ii, 802.CrossRefGoogle Scholar
Isselbacher, K. J. & Greenberger, N. J. (1964 a). New Engl. J. Med. 270, 351.CrossRefGoogle Scholar
Isselbacher, K. J. & Greenberger, N. J. (1964 b). New Engl. J. Med. 270, 402.CrossRefGoogle Scholar
Kalbfleisch, J. M., Lindeman, R. D. & Smith, W. O. (1961). J. Lab. clin. Med. 58, 833.Google Scholar
Kark, R. M. (1960). Gastroenterology 39, 643.Google Scholar
Kiessling, K.-H., Lindgren, L., Strandberg, B. & Tobé, U. (1964). Acta med. scand. 176, 595.CrossRefGoogle Scholar
Kiessling, K.-H. & Pilström, L. (1966 a). Q. Jl Stud. Alcohol. 27, 189.CrossRefGoogle Scholar
Kiessling, K.-H. & Pilström, L. (1966 b). Acta pharmac. tox. 24, 989.CrossRefGoogle Scholar
Kiessling, K.-H., Pilström, L., Strandberg, B. & Lindgren, L. (1965). Acta med. scand. 178, 533.CrossRefGoogle Scholar
Kiessling, K.-H. & Tilander, K. (1960). Expl Cell Res. 19, 628.CrossRefGoogle Scholar
Kiessling, K.-H. & Tilander, K. (1961). Q. Jl Stud. Alcohol. 22, 535.CrossRefGoogle Scholar
Kiessling, K.-H. & Tilander, K. (1963). Expl Cell Res. 30, 476.CrossRefGoogle Scholar
Kiessling, K.-H. & Tobé, U. (1964). Expl Cell Res. 33, 350.CrossRefGoogle Scholar
Klatskin, G. & Krehl, W. A. (1954). J. exp. Med. 100, 615.CrossRefGoogle Scholar
Klatskin, G., Krehl, W. A. & Conn, H. O. (1954). J. exp. Med. 100, 605.CrossRefGoogle Scholar
Lehninger, A. L. & Remmert, L. F. (1959). J. biol. Chem. 234, 2459.CrossRefGoogle Scholar
Lieber, C. S., Jones, D. P. & DeCarli, L. M. (1965). J. clin. Invest. 44, 1009.CrossRefGoogle Scholar
Lowry, J. V., Ashburn, L. L., Daft, F. S. & Sebrell, W. H. (1942). Q. Jl Stud. Alcohol. 3, 168.CrossRefGoogle Scholar
Lundquist, C.-G., Kiessling, K.-H. & Pilström, L. (1966). Acta chem. scand. 20, 2751.CrossRefGoogle Scholar
McCollister, R. J., Flink, E. B. & Doe, R. P. (1960). J. Lab. clin. Med. 55, 98.Google Scholar
McCollister, R. J., Flink, E. B. & Lewis, M. D. (1963). Am. J. clin. Nutr. 12, 415.CrossRefGoogle Scholar
Martin, H. E., McCuskey, C. M. Jr & Tupikova, N. (1959). Am. J. clin. Nutr. 7, 191.CrossRefGoogle Scholar
Mirone, L. (1966). Life Sciences 5, 317.CrossRefGoogle Scholar
Popper, H. (1961). Acta Hepato-splenol. 8, 279.Google Scholar
Popper, H. & Zak, F.G. (1958). Am. J. Med. 7, 188.Google Scholar
Scheig, R., Alexander, N. M. & Klatskin, G. (1966). J. Lipid Res. 7, 188.CrossRefGoogle Scholar
Svoboda, D. J. & Higginson, J. (1964). Am. J. Path. 45, 353.Google Scholar
Svoboda, D. J. & Manning, R. T. (1964). Am. J. Path. 44, 645.Google Scholar
Waterlow, J. (editor) (1955). Protein Malnutrition: Proceedings of a Conference in Jamaica, 1953. London and New York: Cambridge University Press.Google Scholar