Hostname: page-component-586b7cd67f-l7hp2 Total loading time: 0 Render date: 2024-11-25T08:01:19.714Z Has data issue: false hasContentIssue false

Effect of different levels of phosphorus on rumen microbial fermentation and synthesis determined using a continuous culture technique

Published online by Cambridge University Press:  09 March 2007

Sylvie Komisarczuk
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, Berkshire RG2 9AT
R. J. Merry
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, Berkshire RG2 9AT
A. B. McAllan
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading, Berkshire RG2 9AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A continuous culture technique was used to study the phosphorus requirements of rumen micro-organisms. Solutions of artificial saliva containing 120, 80, 40 and 0 mg inorganic phosphorus (Pi)/1 were infused into the reaction vessels previously inoculated with rumen contents, resulting in Pi concentrations in the vessel contents of 48, 28, 4 and < 1 mg/l respectively. Various fermentative and synthetic characteristics were examined.

2. In the vessel contents, concentrations of protozoa (about 0.9 x 105/ml) were not significantly affected by pi concentration. Total volatile fatty acids (VFA) produced averaged about 6.83 mmol/h with Pi levels of 48 and 28 mg/l. Reduction in Pi concentrations to 4 and < 1 mg/l resulted in significant reductions in total VFA to approximately 6.25 and 3.75 mmol/h respectively, accompanied by a rise in pH from 6.5 to 7.3. Ammonia-nitrogen values, which averaged about 131 mg/l at the higher Pi concentrations, also increased with the lowest level of Pi to about 240 mg/l. ATP concentrations averaged about 14 μmol/l at the highest Pi concentration and fell progressively with each reduction in Pi concentration to a final value of 2.5μmol/1 with the Pi level < 1 mg/1.

3. At Pi concentrations of 48 and 28 mg/l, the digestibilities of xylose, arabinose and cellulose-glucose were maintained at about 0.90, 0.62 and 0.70 g/g input respectively. At lower Pi, concentrations these digestibilities fell significantly and corresponding values at Pi < 1 mg/l were 0.73, 0.41 and 0.31 respectively. Starch digestion was unaffected by Pi concentrations and remained at about 0.90 g/g input.

4. The amount of microbial-N synthesized averaged 0.48 g/d and was maintained with Pi concentrations down to 4 mg/l. There was, however, a significant reduction to 0.26 g/d with Pi concentrations of < l mg/l. The effiency of microbial protein synthesis was variable but averaged approximately 25 g N/kg total carbothdrate fermented.

5. It was estimated that the minimum Pi concentrations required in rumen fluid in vivo to maintain maximum degradative and synthetic microbial activities was in the range 75–100 mg/l and that the over-all P requirement of the microbes was of the order of 5.1 g/kg apparently digested organic matter intake.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Slough: Commonwealth Agricultural Bureaux.Google Scholar
Ammerman, C. B., Chicco, C. F., Masri, N. N., Moore, J. E. & Shirley, R. L. (1965). Journal of Animal Science 24, 872.Google Scholar
Anderson, R., Cheng, R. & Burroughs, W. (1956). Journal of Animal Science 15, 489495.CrossRefGoogle Scholar
Bass, J. M., Fishwick, G., Hemingway, R. G., Parkins, J. J. & Ritchie, N. S. (1981). Journal of Agricultural Science, Cambridge 97, 365372.CrossRefGoogle Scholar
Bennink, M. R., Tyler, T. R., Ward, G. M. & Johnson, D. E. (1978). Journal of Dairy Science 61, 315323.CrossRefGoogle Scholar
Bonilla, S. E. (1976). Phosphorus in the nutrition of sheep: composition of body fluids, microbial fermentation and feed intake. PhD Thesis, University of California, Davis.Google Scholar
Breves, G. & Holler, H. (1983). In Protein Metabolism and Nutrition. vol. 11, pp. 321324. [Pion, R., Arnal, M. and Bonin, D., editors]. Paris: INRA.Google Scholar
Breves, G., Holler, H. & Lessmann, H. W. (1985). Proceedings of the Nutrition Society 44, 145A.Google Scholar
Bryant, M. P., Robinson, I. M. & Chu, H. (1959). Journal of Dairy Science 42, 18311847.CrossRefGoogle Scholar
Burroughs, W., Latona, A., Depaul, P., Gerlaugh, P. & Bethke, R. M. (1951). Journal of Animal Science 10, 693705.CrossRefGoogle Scholar
Caldwell, D. R., Kenney, M., Barton, J. S. & Kelley, J. F. (1973). Journal of Bacteriology 114, 782789.CrossRefGoogle Scholar
Chapman, A. G. & Atkinson, D. E. (1977). Advances in Microbial Physiology 15, 253306.CrossRefGoogle Scholar
Chicco, C. F., Ammerman, C. B., Moore, J. E., Van Walleghem, P. A., Arrington, L. R. & Shirley, R. L. (1965). Journal of Animal Science 24, 355363.CrossRefGoogle Scholar
Coombe, J. B., Christian, K. R. & Holgate, M. D. (1971). Journal of Agricultural Science, Cambridge 77, 159174.CrossRefGoogle Scholar
Durand, M., Beaumatin, Ph., Dumay, C., Meschy, F. & Komisarczuk, S. (1986). Reproduction, Nutrition, Développement 26, 297298.CrossRefGoogle Scholar
Durand, M., Beaumatin, Ph. & Dumay, C. (1983 a). Reproduction, Nutrition, Développement 23, 727739.CrossRefGoogle Scholar
Durand, M., Bertier, B., Hannequart, G. & Gueguen, I. (1982). Reproduction, Nutrition, Développement 22, 865879.CrossRefGoogle Scholar
Durand, M., Boxebeld, A., Dumay, C. & Beaumatin, Ph. (1983 b). In Protein Metabolism and Nutrition, vol 11, pp. 263266 [Pion, R., Arnal, M. and Bonin, D., editors]. Paris: INRA.Google Scholar
Durand, M. & Kawashima, R. (1980). In Digestive Physiology and Metabolism in Ruminants, pp. 375408 [Ruckehusch, Y. and Thivend, P., editors]. Lancaster: MTP Press Ltd.CrossRefGoogle Scholar
Fishwick, G., Fraser, J., Hemingway, R. G., Parkins, J. J. & Ritchie, N. S. (1977). Journal of Agricultural Science, Cambridge 88, 143150.CrossRefGoogle Scholar
Francis, G. L., Gawthorne, J. M. & Storer, G. B. (1978). Applied and Environmental Microbiology 36, 643649.CrossRefGoogle Scholar
Garton, G. A. (1951). Journal of Experimental Biology 28, 358368.CrossRefGoogle Scholar
Hall, D. G., Baxter, H. D. & Hobbs, C. S. (1961). Journal of Animal Science 20, 817819.CrossRefGoogle Scholar
Hemingway, R. G. (1967). Outlook on Agriculture 5, 172175.CrossRefGoogle Scholar
Hoover, W. H., Crooker, B. A. & Sniffen, C. J. (1976). Journal of Animal Science 43, 528534.CrossRefGoogle Scholar
Hungate, R. E. (1966). The Rumen and its Microbes. New York: Academic Press.Google Scholar
Komisarczuk, S. (1986). Etude de l'influence du phosphore sur l'activité fermentaire, la protéosynthèse et les teneurs en ATP de contenus de rumen dans différents systemès de culture continu. PhD Thesis, Université de Paris-Sud.Google Scholar
Komisarczuk, S., Durand, M. & Hannequart, G. (1984 a). Reproduction, Nutrition, Développement 24, 903.CrossRefGoogle Scholar
Komisarczuk, S., Merry, R. J. & McAllan, A. B. (1985). Proceedings of the Nutrition Society 44, 141A.Google Scholar
Komisarczuk, S., Merry, R. J. & McAllan, A. B. (1986). Reproduction, Nutrition, Développement 26, 301302.CrossRefGoogle Scholar
Komisarczuk, S., Merry, R. J., McAllan, A. B., Smith, R. H. & Durand, M. (1984 b). Canadian Journal of Animal Science 64, Suppl., 3536.CrossRefGoogle Scholar
Latham, M. J., Sutton, J. D. & Sharpe, M. E. (1974). Journal of Dairy Science 57, 803810.CrossRefGoogle Scholar
Lawlor, M. J., Giesecke, D. & Walser-Karst, K. (1966). British Journal of Nutrition 20, 373382.CrossRefGoogle Scholar
Leedle, J. A. Z. & Hespell, R. B. (1984). Journal of Dairy Science 67, 808816.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1969). British Journal of Nutrition 23, 671682.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1974). British Journal of Nutrition 31, 7788.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1977). British Journal of Nutrition 37, 5565.CrossRefGoogle Scholar
McAllan, A. B. & Smith, R. H. (1983). British Journal of Nutrition 50, 445454.CrossRefGoogle Scholar
McDougall, E. I. (1948). Biochemical Journal 43, 99109.CrossRefGoogle Scholar
Merry, R. J. & McAllan, A. B. (1983). British Journal of Nutrition 50, 701709.CrossRefGoogle Scholar
Merry, R. J., Smith, R. H. & McAllan, A. B. (1987). Archiv für Tierernährung (In the Press).Google Scholar
Milton, J. T. B. & Ternouth, J. H. (1984). Proceedings of the Australian Society of Animal Production 15, 472475.Google Scholar
Nel, J. W. & Moir, R. J. (1974). South African Journal of Animal Science 4, 120.Google Scholar
Nuzback, D. E., Bartley, E. E., Dennis, S. M., Nagaraja, T. G., Galitzer, S. J. & Dayton, A. D. (1983). Applied and Environmental Microbiology 46, 533538.CrossRefGoogle Scholar
Preston, R. L. & Pfander, W. H. (1964). Journal of Nutrition 83, 369378.CrossRefGoogle Scholar
Smith, R. H. (1984). In Nuclear Techniques in Tropical Animal Diseases and Nutritional Disorders, pp. 7996. [edited by International Atomic Energy Agency]. Vienna: IAEA.Google Scholar
Smith, R. H. & McAllan, A. B. (1970). British Journal of Nutrition 24, 545556.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1974). British Journal of Nutrition 31, 2734.CrossRefGoogle Scholar
Smith, R. H., McAllan, A. B., Hewitt, D. & Lewis, P. E. (1978). Journal of Agricultural Science, Cambridge 90, 557568.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1972). In Statistical Methods, 6th ed. Iowa State University Press.Google Scholar
Stewart, C. S. (1975). Journal of General Microbiology 89, 319326.CrossRefGoogle Scholar
Sutton, J. D. (1979). Proceedings ofthe Nutrition Society 38, 275281.CrossRefGoogle Scholar
Tomas, F. M. (1974). Australian Journal of Agricultural Research 25, 485493.CrossRefGoogle Scholar
Van Nevel, C. J. & Demeyer, D. I. (1977). British Journal of Nutrition 38, 101114.CrossRefGoogle Scholar
Wadsworth, J. C. (1977). Proceedings of the Nutrition Society of Australia 2, 89.Google Scholar
Wallace, R. J. & West, A. A. (1982). Journal of Agricultural Science, Cambridge 98, 523528.CrossRefGoogle Scholar
Wilson, A. D. & Tribe, D. E. (1963 a). Australian Journal of Agricultural Research 14, 670679.CrossRefGoogle Scholar
Wilson, A. D. & Tribe, D. E. (1963 b). Australian Journal of Agricultural Research 14, 680689.CrossRefGoogle Scholar