Hostname: page-component-745bb68f8f-b6zl4 Total loading time: 0 Render date: 2025-01-22T08:04:21.712Z Has data issue: false hasContentIssue false

The effect of dietary methyl branched-chain fatty acids on aspects of hepatic lipid metabolism in the rat

Published online by Cambridge University Press:  24 July 2007

K. W. J. Wahle
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
W. R. Hare
Affiliation:
Rowett Research Institute, Bucksburn, Aberdeen AB2 9SB
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Rats were fed to appetite on a stock laboratory diet or on diets consisting of the stock diet and in addition 50 or 200 g triolein/kg, 50 g palmitic acid/kg or 50 g/kg of a concentrate mixture of methyl branched-chain fatty acids (Me-BCFA) which had been prepared from sheep adipose triacylglycerols.

2. No differences could be detected in the Δ9-desaturase activity or fatty acid synthetase activity of liver preparations from rats which had been fed on either the stock diet, the 50 g palmitic acid/kg or the 50 and 200 g triolein/kg diet; the palmitic acid diet was therefore taken as the control diet in subsequent experiments.

3. Rats consuming the 50 g Me-BCFA/kg diet exhibited a marked reduction in the capacity of their liver microsomes for Δ9-desaturation when compared with animals receiving the control diet. The Δ6-desaturase activity also showed an inhibitory trend with the Me-BCFA diet.

4. Microsomal ω-oxidation of fatty acids, mitochondrial succinate oxidation and the activity of cytosolic fatty acid synthetase (FAS) were unaffected by the ingestion of the Me-BCFA mixture compared with the diet which included palmitic acid.

5. There were no differences in the plasma concentrations of thyroxin, insulin and glucagon between animals fed on the diets containing palmitic acid or the Me-BCFA.

6. For a given concentration of fatty acids the Me-BCFA had a greater inhibitory effect when added to incubations of liver microsomes from rats fed on the standard diet than did the addition of palmitic acid.

7. The observations in vivo and in vitro strongly suggested that the Me-BCFA were having a specific inhibitory effect on the desaturation reaction.

Type
Paper on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

Basset, J. M. & Thorburn, G. D. (1971). J. Endocr. 50, 59.CrossRefGoogle Scholar
Björkhem, I. (1976). J. biol. Chem. 251, 5259.CrossRefGoogle Scholar
Brett, D., Howling, D., Morris, L. J. & James, A. T. (1971). Archs Biochem. Biophys. 143, 535.CrossRefGoogle Scholar
Buckner, J. S., Kolattududy, P. E. & Rogers, L. (1978). Archs Biochem. Biophys. 186, 152.CrossRefGoogle Scholar
Chance, B. & Williams, G. R. (1955). J. biol. Chem. 217, 383.Google Scholar
De Gomez-Dumm, I. N. T., de Alaniz, J. J. T. & Brenner, R. R. (1978). Lipids 13, 649.Google Scholar
Do, U. H. & Sprecher, J. (1975). Archs. Biochem. Biophys. 171, 597.CrossRefGoogle Scholar
Duncan, W. R. H., Ørskov, E. R., Fraser, C. & Garton, G. A. (1974). Br. J. Nutr. 32, 71.CrossRefGoogle Scholar
Fogerty, A. C., Johnson, A. R. & Pearson, J. A. (1972). Lipids 7, 335.Google Scholar
Garton, G. A., Hovell, F. E. DeB. & Duncan, W. R. H. (1972). Br. J. Nutr. 28, 409.Google Scholar
Gellhorn, A. & Benjamin, W. (1964). Biochim. biophys. Acta 84, 167.Google Scholar
Hoch, F. L., Depierre, J. W. & Ernster, L. (1980) Eur. J. Biochem. 109, 301.Google Scholar
Horning, M. G., Martin, D. B., Karmen, A. & Vagelos, P. R. (1961). J. biol. Chem. 236, 669.CrossRefGoogle Scholar
Inkpen, C. A., Harris, R. A. & Quackenbush, F. W. (1969). J. Lipid Res. 10, 227.CrossRefGoogle Scholar
Jeffcoat, R., Roberts, P. A., Ormesher, J. & James, A. T. (1979). Eur. J. Biochem. 101, 439.Google Scholar
Joshi, V. C. & Aranda, L. P. (1979). J. biol. Chem. 254, 11779.CrossRefGoogle Scholar
Meyers, D. K. & Slater, E. C. (1957). Biochem. J. 67, 558.Google Scholar
Musch, K., Ojakian, M. A. & Williams, M. A. (1974). Biochim. biophys. Acta. 337, 343.Google Scholar
Oshino, N. & Sato, R. (1972). Archs Biochem. Biophys. 149, 369.Google Scholar
Pande, S. V. & Mead, J. F. (1970). J. biol. Chem. 245, 1856.Google Scholar
Patil, G. S., Sprecher, J. & Cornwall, D. G. (1979). Lipids 14, 826.CrossRefGoogle Scholar
Peluffo, R. O., DeGomex-Dumm, J. N. T., De Alaniz, M. J. T. & Brenner, R. R. (1971). J. Nutr. 101, 1075.CrossRefGoogle Scholar
Raju, P. K. & Reiser, R. (1973). J. Nutr. 103, 904.CrossRefGoogle Scholar
Romsos, D. R. & Leveille, G. A. (1974). Adv. Lipid Res. 17, 97.Google Scholar
Rouer, E., Dansette, P., Beaune, P. & Leroux, J-P. (1980). Biochem. Biophys. Res. Comm. 95, 41.Google Scholar
Scaife, J. R., Wahle, K. W. J. & Garton, G. A. (1978). Biochem. J. 176, 799.CrossRefGoogle Scholar
Smith, A., Calder, A. G., Lough, A. K. & Duncan, W. R. H. (1979). Lipids 14, 953.Google Scholar
Smith, A., Lough, A. K. & Earl, C. R. A. (1978). Proc. Nutr. Soc. 37, 76A.Google Scholar
Uchiyama, M., Nakagawa, M. & Okui, S. (1967). J. Biochem., Tokyo 62, 1.Google Scholar
Wahle, K. W. J. (1974). Comp. Biochem. Physiol. 48B, 87.Google Scholar
Wahle, K. W. J. & Davies, N. T. (1977). J. Sci. Fd Agric. 28, 93.CrossRefGoogle Scholar
Wahle, K. W. J., Duncan, W. R. H. & Garton, G. A. (1979). Ann. Rech. Vet. 10, 362.Google Scholar
Wahle, W. W. J. & Hare, W. R. (1980). Proc. Nutr. Soc. 39, 26A.Google Scholar
Wahle, K. W. J. & Paterson, S. M. (1979). Int. J. Biochem. 10, 433.Google Scholar
Wahle, K. W. J. & Radcliffe, J. D. (1977). Lipids 12, 135.CrossRefGoogle Scholar