Hostname: page-component-7479d7b7d-qs9v7 Total loading time: 0 Render date: 2024-07-08T15:56:34.155Z Has data issue: false hasContentIssue false

The effect of dietary calcium on the activity of 25-hydroxycholecalciferol-l-hydroxylase and Ca absorption in vitamin D-replete chicks

Published online by Cambridge University Press:  24 October 2018

R. Swaminathan
Affiliation:
Department of Animal Physiology and Nutrition, University of Leeds, Leeds LS2 9JF
Barbara A. Sommerville
Affiliation:
Department of Animal Physiology and Nutrition, University of Leeds, Leeds LS2 9JF
A. D. Care
Affiliation:
Department of Animal Physiology and Nutrition, University of Leeds, Leeds LS2 9JF
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

  1. 1. As most of the studies on the regulation of renal 25-hydroxycholecalciferol-1-hydroxylase (25-HCC-1-hydroxylase) activity have been done in marginally-vitamin D-defieient animals and as it is known that vitamin D administration suppresses the specific activity of the 25-HCC-1-hydroxylase, it was decided to study the effect of dietary calcium on the activity of 25-HCC-1-hydroxylase and on Ca absorption in vitamin Dreplete chicks.

  2. 2. Chicks, 10 d old, were given diets differing in their Ca contents (65 nmol cholecalciferol/kg diet) for 10 d and the activity of 25-HCC-1-hydroxylase in kidney homogenates, Ca absorption from the duodenum, Cabinding protein (CaBP) activity in the duodenal mucosa and plasma Ca and phosphate concentrations were all determined.

  3. 3. The CaBP activity and the efficiency of Ca absorption both decreased with increasing dietary intake of Ca. Ca absorption and CaBP activity were significantly correlated (r 0.995, P < 0.01).

  4. 4. The activity of 25-HCC-1-hydroxylase decreased as the dietary level of Ca increased and was significantly correlated with Ca absorption (r0.900, P < 005). The plasma Ca concentration and the activity of 25-HCC-1-hydroxylase were inversely related (r-0.940, P < 0.01).

  5. 5. It is concluded that in the vitamin D-replete chick the efficiency of duodenal Ca absorption is regulated by the renal 25-HCC-1-hydroxylase activity via production of 1,25-dihydroxycholecalciferol and CaBP synthesis.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1977

References

Blunt, J. W., DeLuca, H. F. & Schnoes, H. K. (1968). Biochemistry, Easton 7, 3317.CrossRefGoogle Scholar
Boyle, I. T., Gray, R. W. & DeLuca, H. F. (1971). Proc. nam. Acad. Sci. U.S.A. 68, 2131.CrossRefGoogle Scholar
Colston, K. W., Evans, I. M. A., Galante, L., Maclntyre, I. & Moss, D. W. (1973). Biochem. J. 134, 817.CrossRefGoogle Scholar
Corradino, R. (1973). J. Cell Biol. 58, 64.CrossRefGoogle Scholar
Edelstein, S., Harell, A., Bar, A. & Hurwitz, S. (1975). Biochim. biophys. Acta 385, 438.CrossRefGoogle Scholar
Favus, M. J., Walling, M. W. & Kimberg D. V. (1974). J. din. Invest. 53, 1139.Google Scholar
Fox, J. (1976). Studies of intestinal calcium absorption in domestic animals. PhD Thesis, University of Leeds.Google Scholar
Fraser, D. R. & Kodicek, E. (1973). Nature New Biol. 241, 163.CrossRefGoogle Scholar
Galante, L., Colston, K. W., MacAuley, S. J. & Maclntyre, I. (1972). Lancet i, 985.CrossRefGoogle Scholar
Gitelman, H. J., (1967). Analyt. Biochem. 18, 521.CrossRefGoogle Scholar
Henry, H. L., Midgett, R. J. & Norman, A. W. (1974). J. biol. Chem. 249, 7584.CrossRefGoogle Scholar
Henry, H. L. & Norman, A. W. (1975). Archs Biochem. Biophys. 172, 582.CrossRefGoogle Scholar
Holick, M. F., Schnoes, H. K., DeLuca, H. F., Suda, T. & Cousins, R. J. (1971). Biochemistry, Easton 10, 2799.Google Scholar
Kenny, A. D. (1975). In Pharmacology of Intestinal Absorption: Gastro-intestinal Absorption of Drugs, Section 39b: International Encyclopedia of Pharmacology and Therapeutics, p. 507 [W. Rummel and W. Forth, editors] London: Pergamon Press.Google Scholar
Kimberg, D. V., Schachter, D. & Schenker, H. (1961). Am. J. Physiol. 200, 1256.CrossRefGoogle Scholar
Lawson, D. E. M., Fraser, D. R., Kodicek, E., Morris, H. R. & Williams, D. H. (1971). Nature, Lond. 230, 228.CrossRefGoogle Scholar
Lowry, O. H., Rosebrough, M. J., Farr, A. D. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Mawer, E. B. & Backhouse, J. (1969). Biochem. J. 112, 255.CrossRefGoogle Scholar
Morrissey, R. L. & Wasserman, R. H. (1971). Am. J. Physiol. 220, 1509.CrossRefGoogle Scholar
Nicolaysen, R., Eeg-Larsen, N. & Malm, O. J. (1953). Physiol. Rev. 33, 424.CrossRefGoogle Scholar
Omdahl, J. L., Gray, R. W., Boyle, I. T., Knutson, J. & DeLuca, H. F. (1972). Nature New Biol. 237, 63.CrossRefGoogle Scholar
Swaminathan, R. & Care, A. D. (1975). Calcif. Tiss. Res. 17, 257.CrossRefGoogle Scholar
Swaminathan, R., Fox, J., Tomlinson, S. & Care, A. D. (1974). J. Endocr. 61, lxxviii.CrossRefGoogle Scholar
Tanakja, Y. & DeLuca, H. F. (1973). Archs Biochem. Biophys. 154, 566.CrossRefGoogle Scholar
Technicon Instruments Co., Ltd. (1966). Technicon Methodology Sheet N-4B. Basingstoke, Hants: Technicon Instruments Co. Ltd.Google Scholar
Tsai, H. C., Wong, R. C. & Norman, A. W. (1972). J. biol. Chem. 247, 5511.CrossRefGoogle Scholar
Wasserman, R. H. & Corradino, R. A. (1973). Vitams Horm. 31, 43.CrossRefGoogle Scholar
Wasserman, R. H., Corradino, R. A. & Taylor, A. N. (1968). J. biol. Chem. 243, 3978.CrossRefGoogle Scholar
Winter, M., Morava, E., Horvath, T., Simon, G. & Sos, J. (1972). Br. J. Nutr. 28, 105.CrossRefGoogle Scholar