Hostname: page-component-78c5997874-94fs2 Total loading time: 0 Render date: 2024-11-06T09:05:18.672Z Has data issue: false hasContentIssue false

Effect of casein, casein phosphopeptides and calcium intake on ileal 45Ca disappearance and temporal systolic blood pressure in spontaneously hypertensive rats*

Published online by Cambridge University Press:  09 March 2007

David D. Kitts
Affiliation:
Department of Food Science, Faculty of Agricultural Sciences, University of British Columbia, 6650 N.W. Marine Drive, Vancouver B.C. V6T 1Z4Canada
Yvonne V. Yuan
Affiliation:
Department of Food Science, Faculty of Agricultural Sciences, University of British Columbia, 6650 N.W. Marine Drive, Vancouver B.C. V6T 1Z4Canada
Takashi Nagasawa
Affiliation:
Department of Food Science, Faculty of Agricultural Sciences, University of British Columbia, 6650 N.W. Marine Drive, Vancouver B.C. V6T 1Z4Canada
Yoshio Moriyama
Affiliation:
Department of Food Science, Faculty of Agricultural Sciences, University of British Columbia, 6650 N.W. Marine Drive, Vancouver B.C. V6T 1Z4Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Paracellular 45Ca absorption and temporal systolic blood pressure (SBP) measurements were recorded in spontaneously hypertensive (SHR) and normotensive Wistar-Kyoto (WKY) ratsfed on casein (C) and soya-bean-protein isolate (S) diets, containing 20 (H), 5 (M) and 0.5(L)g Ca/kg. Similar measurements were also taken in SHR rats only fed on C-M and S-M dietssupplemented with 30 g caseinophosphopeptides (CPP)/kg. Absorption of 45Ca fromthe ileal loop was equivalent in both SHR and WKY animals and largely affected by the level ofdietary Ca. In addition, animals fed on C diets exhibited significantly (P < 0.05) greater ileal absorption of 45Ca compared with S-fed animals. This result was attributed to the presence of CPP and a greater (P < 0.05) proportion of soluble 45Ca inthe contents of the ileum. Animals fed on S diets supplemented with CPP confirmed this finding.The SBP of SHR rats was higher (P < 0.01) than WKY controls after 9–10 weeks of age. The temporal pattern of observed hypertension was independent of dietary influence in the SHR. The severity of hypertension in SHR rats was affected only by dietary Ca deficiency, and not byCa supplementation or CPP enhancement of Ca bioavailability. These findings suggest that trypticdigestion products of casein in milk can enhance Ca bioavailability by increasing Ca solubility; however, this action had no effect in reducing hypertension in SHR.

Type
Dietary Effects of Hypertension
Copyright
Copyright © The Nutrition Society 1992

References

Ackley, S., Barrett-Connor, E. & Suarez, L. (1983). Dairy products, calcium, and blood pressure. American Journal of Clinical Nutrition 38, 457461.CrossRefGoogle ScholarPubMed
Addison, W. L. T. (1924). The use of calcium chloride in arterial hypertension. Canadian Medical Association Journal 14, 10591061.Google Scholar
Au, W. Y. W. (1984). Inhibition of 1,25-dihydroxycholecalciferol of hormonal secretion of rat parathyroid gland in organ culture. Calcified Tissue International 36, 384388.CrossRefGoogle ScholarPubMed
Ayachi, S. (1979). Increased dietary calcium lowers blood pressure in the spontaneously hypertensive rat. Metabolism 28, 12341238.CrossRefGoogle ScholarPubMed
Blakeborough, P., Neville, S. G. & Rolls, B. A. (1990).The effect of diets adequate and deficient in calcium on blood pressures and the activitiesof intestinal and kidney plasma membrane enzymes in normotensive and spontaneously hypertensiverats. British Journal of Nutrition 63, 6578.Google Scholar
Buchowski, M. S., Sowizral, K. C., Lengemann, F. W., Van Campen, D. & Miller, D. D. (1989). A comparison of intrinsic and extrinsic tracer methods for estimating calcium bioavailability in rats from dairy foods. Journal of Nutrition 119, 228234.Google Scholar
Canadian Council of Animal Care (1984). Guide to the Care and Use of Experimental Animals, vol. 2. Ottawa, ON: Canadian Council on Animal Care.Google Scholar
Chen, P. S., Toribara, T. Y. & Warner, H. (1956). Microdetermination of phosphorus. Analytical Chemistry 28, 17561758.Google Scholar
Cheng, A. L. S., Morehouse, M. G. & Deuel, H. J. Jr (1949). The effect of the level of dietary calcium and magnesium on the digestibility of fatty acids, simple triglycerides, and some natural and hydrogenated fats. Journal of Nutrition 37, 237250.Google Scholar
Cramer, C. F. & Copp, D. H. (1959). Progress and rate of absorption of radiostrontium through the intestinal tracts of rats. Proceedings of the Society of Experimental Biology and Medicine 102, 514517.Google Scholar
Garcia-Palmieri, M. R., Costas, R. Jr, Cruz-Vidal, M., Sorlie, P. D., Tillotson, J. & Havlik, R. J. (1984). Milk consumption, calcium intake and decreased hypertension in Puerto Rico. Puerto Rico Heart Program Study. Hypertension 6, 322328.CrossRefGoogle ScholarPubMed
Gerber, H. W. & Jost, R. (1986). Casein phosphopeptides: Their effect in calcification of in vitro cultured embryonic rat bone. Calcified Tissue International 38, 350357.CrossRefGoogle ScholarPubMed
Gonzalez, M. F. & Deutsch, J. A. (1985). Intragastric injections of partially digested triglycerides suppress feeding in the rat. Physiology & Behaviour 35, 861865.Google Scholar
Grubenmann, W., Binswanger, W., Hunziker, N. & Fischer, J. A. (1978). Effects of calcium intake and renal function on plasma immunoreactive parathyroid hormone levels in rats. Hormone and Metabolic Research 10, 438443.CrossRefGoogle ScholarPubMed
Hatton, D. C., Scrogin, K., Metz, J. A. & McCarron, D. A. (1989). Dietary calcium alters blood pressure reactivity in Spontaneously Hypertensive Rats. Hypertension 13, 622629.CrossRefGoogle ScholarPubMed
Heagerty, A. M. (1990). Intra- and extracellular calcium and hypertension. Proceedings of the Nutrition Society 49, 8390.CrossRefGoogle ScholarPubMed
Ikeda, K., Mochizuki, S., Nara, Y., Horie, R. & Yamori, Y. (1987). Effect of milk protein and fat intake on blood pressure and the incidence of cerebrovascular diseases in stroke-prone spontaneously hypertensive rats.Journal of Nutritional Science and Vitaminology 33, 3136.CrossRefGoogle ScholarPubMed
Jones, M. R., Martins, J. E. & Clemens, R. A. (1988). Mineral balance and blood pressure in the young Spontaneously Hypertensive Rat. Journal of Nutrition 118, 114120.Google Scholar
Kurtz, T. W., Portale, A. A. & Morris, R. C. Jr (1986). Evidence for a difference in vitamin D metabolism between Spontaneously Hypertensive and Wistar-Kyoto rats. Hypertension 8, 10151020.Google Scholar
Lee, Y. S., Noguchi, T. & Naito, H. (1980). Phosphopeptides and soluble calcium in the small intestine of rats given a casein diet. British Journal of Nutrition 43, 457467.CrossRefGoogle Scholar
Lee, Y. S., Noguchi, T. & Naito, H. (1983). Intestinal absorption of calcium in rats given diets containing casein or amino acid mixture: the role of casein phosphopeptides. British Journal of Nutrition 49, 6776.Google Scholar
McCance, R. A. & Widdowson, E. M. (1942). Mineral metabolism on dephytinized bread. Journal of Physiology 101, 304310.Google Scholar
McCarron, D. A. (1982). Blood pressure and calcium balance in the Wistar-Kyoto rat. Life Science 30, 683689.Google Scholar
McCarron, D. A., Lucas, P. A., Schneidman, R. J., LaCour, B. & Drueke, T. (1985). Blood pressure development in the spontaneously hypertensive rat after concurrent manipulations of dietary Ca2+ and Na+. Relation to intestinal Ca2+ fluxes. Journal of Clinical Investigation 76, 11471154.Google Scholar
McCarron, D. A. & Morris, C. D. (1985). Blood pressure response to oral calcium supplementation in mild to moderate hypertension. Annals of Internal Medicine 103, 825831.CrossRefGoogle Scholar
McCarron, D. A., Morris, C. D. & Cole, C. (1982). Dietary calcium in human hypertension. Science 217,267269.CrossRefGoogle ScholarPubMed
McCarron, D. A., Yung, N. N., Ugoretz, B. A. & Krutzik, S. (1981). Disturbances of calcium metabolism in the spontaneously hypertensive rat. Hypertension 3, 11621167.CrossRefGoogle ScholarPubMed
Malawer, S. J. & Powell, D. W. (1967). An improved turbidometric analysis of polyethylene glycol utilizing an emulsifier. Gastroenterology 53, 250256.CrossRefGoogle Scholar
Marcus, C. S. & Lengemann, F. W. (1962). Absorption of 45Ca and 89Sr from solid food at various levels of the alimentary tract. Journal of Nutrition 77, 155160.CrossRefGoogle Scholar
Markwell, M. A., Hans, S. M., Bieber, L. L. & Tolbert, N. E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry 87, 206210.CrossRefGoogle ScholarPubMed
Maruyama, S. & Suzuki, H. (1982). A peptide inhibitor of angiotensin I converting enzyme in the tryptic hydrolysate of casein. Agricultural and Biological Chemistry 46, 13931394.Google Scholar
Mauer, J. (1977). Extraction method for the simultaneous determination of Na, K, Ca, Mg, Fe, Cu, Zn and Mn in organic material using atomic absorption spectrophotometry. Zeitschrift fur Lebensmittel Untersuchung und Forschung 165, 14.Google Scholar
Meisel, H. & Frister, H. (1989). Chemical characterization of bioactive peptides from in vivo digests of casein. Journal of Dairy Research 56, 343349.CrossRefGoogle ScholarPubMed
Mellander, O. (1963). Phosphopeptides: chemical properties and their possible role in the intestinal absorption of metals. In The Transport of Calcium and Strontium across Biological Membranes, pp. 265276. [Wasserman, R. H., editor]. New York: Academic Press.CrossRefGoogle Scholar
Mykkanen, H. M. & Wasserman, R. H. (1980). Enhanced absorption of calcium by casein phosphopeptides in rachitic and normal chicks. Journal of Nutrition 110, 21412148.CrossRefGoogle ScholarPubMed
Nagasawa, T., Yuan, Y. V. & Kitts, D. D. (1991). Casein phosphopeptides enhance paracellular calcium absorption but do not alter temporal blood pressure in normotensive rats. Nutrition Research 11, 819830.Google Scholar
Naito, H., Kawakami, A. & Imamura, T. (1972). In vivo formation of phosphopeptide with calcium-binding property in the small intestinal tract of the rat fed on casein. Agricultural and Biological Chemistry 36, 409415.Google Scholar
Naito, H. & Suzuki, H. (1974). Further evidence for the formation in vivo of phosphopeptide in the intestinal lumen from β-casein. Agricultural and Biological Chemistry 38, 15431545.Google Scholar
Nellans, H. N. & Kimberg, D. V. (1979). Anomalous calcium secretion in rat ileum: role of paracellular pathway. Americal Journal of Physiology 236, E473–E481.Google Scholar
Norman, A. W. (1985). The vitamin D endocrine system. Physiologist 28, 219231.Google Scholar
Okamoto, K. & Aoki, K. (1963). Development of a strain of spontaneously hypertensive rats. Japanese Circulation Journal 27, 282293.Google Scholar
Platt, S. R., Nadeau, D. B., Gifford, S. R. & Clydesdale, F. M. (1987). Protective effect of milk on mineral precipitation by Na phytate. Journal of Food Science 52, 240241.Google Scholar
Reed, D., McGee, D., Yano, K. & Hankin, J. (1985). Diet, blood pressure and multicolinearity. Hypertension 7, 405410.Google Scholar
Reeves, P. G. & O'Dell, B. L. (1988). Effect of zinc deficiency on blood pressure in rats fed normal and high levels of dietary calcium. Nutrition Research 8, 11431150.Google Scholar
Resnick, L. M. (1987). Dietary calcium and hypertension. Journal of Nutrition 117, 18061808.Google Scholar
Sato, R., Noguchi, T. & Naito, H. (1986). Casein phosphopeptide (CPP) enhances calcium absorption from the ligated segment of rat small intestine. Journal of Nutritional Science and Vitaminology 32, 6776.Google Scholar
Schleiffer, R., Pernot, F., Berthelot, A. & Gairard, A. (1984). Low calcium diet enhances development of hypertension in the spontaneously hypertensive rat. Clinical and Experimental Hypertension 6, 783794.Google Scholar
Szabo, A., Merke, J., Mall, G. & Ritz, E. (1989). 1,25(OH)2 vitamin D3 inhibits parathyroid cell proliferation in experimental uremia. Kidney International 35, 10491056.Google Scholar
Tanaka, K., Aso, B. & Sugano, M. (1984). Biliary steroid excretion in rats fed soybean protein and casein or their amino acid mixtures. Journal of Nutrition 114, 2632.Google Scholar
Toraason, M. A. & Wright, G. L. (1981). Transport of calcium by duodenum of spontaneously hypertensive rats. American Journal of Physiology 241, G344–G347.Google Scholar
Trechsel, U., Eisman, J. A., Fischer, J. A., Bonjour, J. P. & Fleisch, H. (1980). Calcium-dependent parathyroid hormone-independent regulation of 1,25-dihydroxyvitamin D. Americal Journal of Physiology 239, E119–E214.Google Scholar
Vincent, M., Grafmeyer, D., Jarsaillon, E., Dupont, J. & Sassard, J. (1977). A longitudinal study of plasma biochemical variables in the strain of spontaneously hypertensive and normotensive rats. Comparative Biochemistry and Physiology 56, 305306.CrossRefGoogle Scholar
Wasserman, R. H., Comar, C. L. & Nold, M. M. (1956). The influence of amino acids and other organic compounds on the gastrointestinal absorption of calcium45 and strontium89 in the rat. Journal of Nutrition 59, 371383.CrossRefGoogle Scholar
Wasserman, R. H. & Taylor, A. N. (1976). Gastrointestinal absorption of calcium and phosphorus. In Handbook of Physiology, vol. 7, pp. 137155 [Greep, R. O. and Astwood, E. B., editors]. Washington, DC: American Physiological Society.Google Scholar
Wyss, J. M., Chen, Y. F., Meng, Q., Jin, H., Juirikulsomchok, S. & Oparil, S. (1989). Dietary Ca2+ prevents NaCl- induced exacerbation of hypertension and increases hypothalamic norepinephrine turnover in spontaneously hypertensive rats. Journal of Hypertension 7, 711719.Google Scholar
Yacowitz, H., Fleischman, A. I., Amsden, R. T. & Bierenbaum, M. L. (1967). Long-term studies on the hypolipemic effect of dietary calcium in rats fed saturated and unsaturated fat. Journal of Nutrition 92, 389392.Google Scholar
Yamamoto, M., Igarashi, T., Muramatsu, M., Fukagawa, M., Motokura, T. & Etsuro, O. (1989). Hypocalcemia increases and hypercalcemia decreases the steady-state level of parathyroid hormone messenger RNA in the rat. Journal of Clinical Investigation 83, 10531056.Google Scholar
Yvon, M. & Pelissier, J. P. (1987). Characterization and kinetics of evacuation of peptides resulting from casein hydrolysis in the stomach of the calf. Journal of Agricultural and Food Chemistry 35, 148156.CrossRefGoogle Scholar
Zeisler, E. B. (1954). Determination of diffusible serum calcium. American Journal of Clinical Pathology 24, 588592.Google Scholar