Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-22T07:59:45.887Z Has data issue: false hasContentIssue false

The effect of biotin deficiency and dietary protein content on lipogenesis, gluconeogenesis and related enzyme activities in chick liver

Published online by Cambridge University Press:  09 March 2007

D. W. Bannister
Affiliation:
Agricultural Research Council's Poultry Research Centre, Roslin, Midlothian EH25 9PS, Scotland
Iris E. O'Neill
Affiliation:
Agricultural Research Council's Poultry Research Centre, Roslin, Midlothian EH25 9PS, Scotland
C. C. Whitehead
Affiliation:
Agricultural Research Council's Poultry Research Centre, Roslin, Midlothian EH25 9PS, Scotland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Chicks were given biotin-deficient diets containing either suboptimal (low) or supraoptimal (high) concentrations of protein from 1-d-old until they were used during their fourth week of life. The low-protein diet predisposed chicks to develop fatty liver and kidney syndrome and the high-protein diet to develop classical biotin deficiency signs. Two other groups, as controls, received biotin-supplemented rations.

2. Low dietary protein increased lipogenesis by isolated hepatocytes but had little effect on gluconeogenesis compared to high dietary protein.

3. Low dietary protein decreased activities of hepatic isocitrate dehydrogenase (EC 1.1.1.42), fructose-1,6-bisphosphatase (EC 3.1.3.11) and glucose-6-phosphatase (EC 3.1.3.9; GP) and increased activities of fatty acid synthase (FAS), citrate cleavage enzyme (EC 4.1.3.8; CCE) and malate dehydrogenase (decarboxylating) (EC 1.1.1.39).

4. When biotin deficiency was superimposed, the rate of lipogenesis by isolated hepatocytes (from fed birds) was decreased. Gluconeogenesis from lactate and glycerol was also depressed.

5. Activity of GP was further decreased by biotin deficiency on the low-protein regimen and FAS and CCE were further increased. PK activity was increased by biotin deficiency.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

REFERENCES

Achuta Murthy, P. N. & Mistry, S. P. (1972). Journal of Scientific and Industrial Research 31, 554563.Google Scholar
Arslanian, M. J. & Wakil, S. J. (1975). Methods in Enzymology 35B, 5965.CrossRefGoogle Scholar
Balnave, D., Cumming, R. B. & Sutherland, T. M. (1977). British Journal of Nutrition 38, 319328.CrossRefGoogle Scholar
Balnave, D. & Jackson, N. (1974). International Journal of Biochemistry 5, 781786.CrossRefGoogle Scholar
Balnave, D. & Pearce, J. (1969). Comparative Biochemistry and Physiology 29, 539550.CrossRefGoogle Scholar
Bannister, D. W. (1976). Biochemical Journal 156, 167173.CrossRefGoogle Scholar
Bannister, D. W. (1979). International Journal of Biochemistry 10, 193199.CrossRefGoogle Scholar
Bannister, D. W. (1982). British Poultry Science 23, 555561.Google Scholar
Bannister, D. W. & O’Neill, I. E. (1981). International Journal of Biochemistry 13, 437444.CrossRefGoogle Scholar
Bannister, D. W. & Whitehead, C. C. (1976). International Journal of Biochemistry 7, 619624.CrossRefGoogle Scholar
Blair, R., Whitehead, C. C. & Teague, P. W. (1975). Research in Veterinary Science 18, 7681.CrossRefGoogle Scholar
Boeckx, R. L. & Dakshinamurti, K. (1974). Biochemical Journal 140, 549556.CrossRefGoogle Scholar
Clarke, S. D., Watkins, P. A. & Lane, M. D. (1979). Journal of Lipid Research 20, 974985.CrossRefGoogle Scholar
Dakshinamurti, K. & Litvak, S. (1970). Journal of Biological Chemistry 245, 56005605.CrossRefGoogle Scholar
Dakshinamurti, K. & Mistry, S. P. (1963). Journal of Biological Chemistry 238, 297301.CrossRefGoogle Scholar
Denton, R. M. & Halestrap, A. P. (1979). Essays in Biochemistry 15, 3777.Google Scholar
Dickson, A. J. & Langslow, D. R. (1978). Molecular and Cellular Biochemistry 22, 167181.CrossRefGoogle Scholar
Feliu, J. E., Heu, L. & Hers, H-G. (1976). Proceedings of the National Academy of Sciences, USA 73, 27622766.CrossRefGoogle Scholar
Feliu, J. E., Heu, L. & Hers, H-G. (1977). European Journal of Biochemistry 81, 609617.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane-Stanley, C. H. (1957). Journal of Biological Chemistry 226, 497509.CrossRefGoogle Scholar
Harper, A. E. (1963). In Methods of Enzymatic Analysis, pp. 788792.[Bergmeyer, H. U. editor]. London and New York: Academic Press.Google Scholar
Hinman, L. M. & Blass, J. P. (1981). Journal of Biological Chemistry 256, 65836586.CrossRefGoogle Scholar
Hood, R. L., Johnson, A. R., Fogerty, A. C. & Pearson, J. A. (1976). Australian Journal of Biological Sciences 29, 429441.CrossRefGoogle Scholar
Huggett, A. St. G. & Nixon, D. A. (1957). Biochemical Journal 66, 12P.Google Scholar
Kim, K-H. (1979). Molecular and Cellular Biochemistry 28, 2743.CrossRefGoogle Scholar
McGarry, J. D. & Foster, D. W. (1980). Diabetes 29, 236240.CrossRefGoogle Scholar
Marthedal, H. E. & Velling, G. (1958). Nordiska Veterinarmotet 8, 250255.Google Scholar
Meredith, M. J. & Lane, M. D. (1978). Journal of Biological Chemistry 253, 33813383.CrossRefGoogle Scholar
Ochs, R. S. & Harris, R. A. (1978). Archives of Biochemistry and Biophysics 190, 193201.CrossRefGoogle Scholar
Osterlund, B. & Bridger, W. A. (1977). Biochemical and Biophysical Research Communications 76, 18.CrossRefGoogle Scholar
Payne, C. G., Gilchrist, P., Pearson, J. A. & Hemsley, L. A. (1974). British Poultry Science 15, 489498.CrossRefGoogle Scholar
Robblee, A. R. & Clandinin, D. R. (1953). Poultry Science 32, 579582.CrossRefGoogle Scholar
Scrutton, M. C. & Utter, M. F. (1968). Annual Review of Biochemistry 37, 249302.CrossRefGoogle Scholar
Seubert, W. & Huth, W. (1965). Biochemische Zeitschrift 343, 176191.Google Scholar
Utter, M. F. (1959). Annals of the New York Academy of Sciences 72, 451461.CrossRefGoogle Scholar
Wallace, J. C. & Newsholme, E. A. (1967). Biochemical Journal 104, 378384.CrossRefGoogle Scholar
Watford, M., Hod, Y., Chiao, Y-B., Utter, M. F. & Hanson, R. W. (1981). Journal of Biological Chemistry 256, 1002310027.CrossRefGoogle Scholar
Whitehead, C. C. (1978). In Handbook Series in Nutrition and Food, sect. E, vol. 2, pp. 6593. [Rechagle, M. editor]. Florida: CRC Press Inc.Google Scholar
Whitehead, C. C. & Bannister, D. W. (1978). British Journal of Nutrition 39, 547556.CrossRefGoogle Scholar
Whitehead, C. C. & Bannister, D. W. (1981). British Poultry Science 22, 467472.CrossRefGoogle Scholar
Whitehead, C. C., Bannister, D. W. & Cleland, M. E. (1978). British Journal of Nutrition 40, 221234.CrossRefGoogle Scholar
Whitehead, C. C., Bannister, D. W., Evans, A. J., Siller, W. G. & Wight, P. A. L. (1976 a). British Journal of Nutrition 35, 115125.CrossRefGoogle Scholar
Whitehead, C. C. & Blair, R. (1974). Research in Veterinary Science 17, 8690.CrossRefGoogle Scholar
Whitehead, C. C. & Blair, R. (1976). Research in Veterinary Science 21, 141145.CrossRefGoogle Scholar
Whitehead, C. C., Blair, R., Bannister, D. W. & Evans, A. J. (1975). Research in Veterinary Science 18, 100104.CrossRefGoogle Scholar
Whitehead, C. C., Blair, R., Bannister, D. W., Evans, A. J. & Jones, R. M. (1976 b). Research in Veterinary Science 20, 180184.CrossRefGoogle Scholar
Whitehead, C. C. & Siller, W. G. (1983). Research in Veterinary Science 34, 7376.CrossRefGoogle Scholar
Wise, E. M. & Ball, E. G. (1964). Proceedings of the National Academy of Sciences, USA 52, 12551263.CrossRefGoogle Scholar
Yeh, Y-Y. & Leveille, G. A. (1969). Journal of Nutrition 98, 356366.CrossRefGoogle Scholar