Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T23:41:40.207Z Has data issue: false hasContentIssue false

Effect of antibiotics on intestinal absorption in mice

Published online by Cambridge University Press:  09 March 2007

David S. Madge
Affiliation:
Department of Biological Sciences, Wye College (University of London), Nr Ashford, Kent
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effects of dietary antibiotics (penicillin, neomycin or terramycin) on the absorption of D-glucose, D-galactose, L-arginine or L-histidine by the mouse were investigated by using sacs of entire everted ileum.

2. Compared with the controls, there was generally an increased absorption of all these solutes. Tissue uptake of the solutes remained unaltered. The inward movement of water into the sacs was increased but was generally independent of solute transport.

3. The body-weight decreased slightly and caecal weight increased with penicillin only. The weight of the small intestine decreased with the different antibiotics, and the gut wall became thinner. Faecal fat increased slightly, but not significantly, with neomycin only. Water intake decreased with the different antibiotics.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1969

References

Bailey, N. T. J. (1959). Statistical Methods in Biology. London: English Universities Press Ltd.Google Scholar
Barnett, S. A. & Munro, K. M. H. (1968). Lab. Anim. 2, 45.CrossRefGoogle Scholar
Barry, B. A., Matthews, J. & Smyth, D. H. (1961). J. Physiol., Lond. 157, 279.CrossRefGoogle Scholar
Basil, B., Ireland, D. M., Thorn, A. G., Tomich, E. G. & Somers, G. F. (1955). Antibiotics Chemother. 5, 152.Google Scholar
Dubos, R. J., Savage, D. C. & Schaedler, R. W. (1967). Dis. Colon Rectum 10, 23.CrossRefGoogle Scholar
Dubos, R., Schaedler, R. W. & Costello, R. L. (1963). J. exp. Med. 117, 245.CrossRefGoogle Scholar
Dubos, R., Schaedler, R. W. & Stephens, M. (1963). J. exp. Med. 117, 231.CrossRefGoogle Scholar
Duncombe, W. G. (1963). Biochem. J. 88, 7.CrossRefGoogle Scholar
Eyssen, H. & De, Somer (1963). J. exp. Med. 117, 127.CrossRefGoogle Scholar
Faloon, W. W. (1954). J. Lab. clin. Med. 44, 75.Google Scholar
Faloon, W. W., Noll, J. W. & Prior, J. T. (1953). J. Lab. clin. Med. 41, 596.Google Scholar
François, A. C. & Michel, M. C. (1968). Biblthca ‘Nutr. Dieta’ 10, 35.Google Scholar
Garrod, L. P. & Scowen, E. F. (1960). Br. med. Bull. 16, 23.CrossRefGoogle Scholar
Gordon, H. A. & Bruckner-Kardoss, E. (1961). Acta anat. 4, 210.CrossRefGoogle Scholar
Jacobson, E. D., Chodes, R. B. & Faloon, W. W. (1960). Am. J. Med. 28, 524.CrossRefGoogle Scholar
Krebs, H. A. & Henseleit, K. (1932). Hoppe-Seyler's Z. physiol. Chem. 210, 33.CrossRefGoogle Scholar
Luckey, T. D. (1959). Antibiotics—their Chemistry and Non-Medical Uses, p. 174. [Goldberg, H. S. D., editor.] Princeton, New Jersey: Van Nostrand Co. Inc.Google Scholar
Macpherson, H. T. (1946). Biochem. J. 40, 470.CrossRefGoogle Scholar
Madge, D. S. (1969). Comp. Biochem. Physiol. (In the Press.)Google Scholar
Meynell, G. G. (1963). Br. J. exp. Path. 44, 209.Google Scholar
Mills, D. W. (1960). Archs int. Pharmacodyn. 125, 83.Google Scholar
Mirone, L. (1953). Antibiotics Chemother. 3, 600.Google Scholar
Somogyi, M. (1952). J. biol. Chem. 195, 19.CrossRefGoogle Scholar
Sprinz, H. (1962). Fedn Proc. Fedn Am. Socs exp. Biol. 21, 57.Google Scholar
Suda, M. & Shimomura, A. (1964). Osaka Univ. med. J. 16, 11.Google Scholar
Wiseman, G. (1955). J. Physiol., Lond. 127, 414.CrossRefGoogle Scholar
Wiseman, G. (1961). Meth. med. Res. 9, 287.Google Scholar