Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-29T19:27:51.672Z Has data issue: false hasContentIssue false

The effect of abomasal infusion of casein on acetate, palmitate and glucose kinetics in cows during early lactation

Published online by Cambridge University Press:  09 March 2007

Barbara A. Köning
Affiliation:
Department of Physiology and Biochemistry, University of Reading, Whiteknights, Reading RG6 2AJ
J. D. Oldham
Affiliation:
National Institute for Research in Dairying, Shinjield, Reading RG2 9AT
D. S. Parker
Affiliation:
Department of Physiology and Biochemistry, University of Reading, Whiteknights, Reading RG6 2AJ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Four mature Friesian cows were used in a Latin square design experiment to measure the effects of abomasal casein infusion on milk production and the kinetics of glucose, acetate and palmitate in jugular venous blood.

2. The basal ration contained 110 g crude protein/kg dry matter and was offered at the rate of 4 kg hay, 3 kg alkali-treated straw cubes plus 9 kg concentrates/d. Treatments were infusion of casein into the abomasum at the rate of 0, 240 or 460 g/d. The experiment started 1 week post partum. Experimental periods lasted 21 d.

3. [6-3H]glucose, [9, 10-3H]palmitate and [U-14C]acetate were continuously infused into one jugular vein for measurements of whole-body flux rates.

4. The yield of milk protein was increased significantly (P < 0.05) by the first increment of casein infusion, with no further increases.

5. Casein infusion had no effect on blood concentrations of glucose, acetate, palmitate or growth hormone. Mean flux rate of glucose increased with each increment of casein. The effect at 460 g/d was higher (P < 0.1) than with no infusion. Flux rates of palmitate and acetate were increased (P< 0.1) by the first increment of casein. The proportion of blood bicarbonate derived from acetate increased (P < 0.05) with the first increment of casein.

6. Protein status of cows early in lactation influences the dynamics of glucose and fatty acid metabolism.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1984

References

Agricultural Research Council (1980). The Nutrient Requirements of Ruminant Livestock. Farnham Royal: Commonwealth Agricultural Bureaux.Google Scholar
Annison, E. F. & Lindsay, D. B. (1962). Biochemical Journal 85, 474479.CrossRefGoogle Scholar
Baird, G. D., Van der Walt, J. G. & Bergman, E. N. (1983). British Journal of Nutrition 80, 249265.CrossRefGoogle Scholar
Barry, T. N. (1980). New Zealand Journal of Agricultural Research 23, 427431.CrossRefGoogle Scholar
Christie, W. W. (1981). In Lipid Metabolism in Ruminant Animals, pp. 95191 [Christie, W. W., editor]. Oxford: Pergamon Press.CrossRefGoogle Scholar
Clark, H. H. (1975) Journal of Dairy Science 58, 11781197.CrossRefGoogle Scholar
Clark, J. H., Spires, H. R., Derrig, R. G. & Bennink, M. R. (1977). Journal of Nutrition 107, 631644.CrossRefGoogle Scholar
Claypool, D. W., Pangborn, M. C. & Adams, H. P. (1980). Journal of Dairy Sciences 63, 833837.CrossRefGoogle Scholar
Dunn, A., Katz, J., Golden, S. & Chenoweth, M. (1976) American Journal of Physiology 230, 11591162.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane-Stanley, G. H. (1957). Journal of Biological Chemistry 226, 467509.CrossRefGoogle Scholar
Gardner, J. W. & Thompson, G. E. (1974) Analyst 99, 326329.CrossRefGoogle Scholar
Gow, C. B., Ranawana, S. S. E., Kellaway, R. C. & McDowell, G. H. (1979). British Journal of Nutrition 41, 371382.CrossRefGoogle Scholar
Hart, I. C. (1983). Proceedings of the Nutrition Society 42, 181194.CrossRefGoogle Scholar
Hart, I. C., Flux, D. S., Andrews, P. & McNeilly, A. S. (1975). Hormone and Metabolic Research 7, 3540.CrossRefGoogle Scholar
Hinks, N. T., Mills, S. C. & Setchell, B. P. (1966). Analytical Biochemistry 17, 551553.CrossRefGoogle Scholar
Jones, G. B. (1965). Analytical Biochemistry 12, 249258.CrossRefGoogle Scholar
König, B. A., Parker, D. S. & Oldham, J. D. (1979). Annales de Recherches Veterinaires 10, 368370.Google Scholar
König, B. A., Parker, D. S. & Oldham, J. D. (1981). Proceedings of the Nutrition Society 40. 18A.Google Scholar
Krebs, H. A. (1965). In Energy Metabolism, pp. 19 [Blaxter, K. L., editor]. New York: Academic Press.Google Scholar
Kronfeld, D. S. (1977). Federation Proceedings 36, 259264.Google Scholar
Lees, J. A., Garnsworthy, P. C. & Oldham, J. D. (1982). Occasional Publication of the British Society of Animal Production 6, 157159.Google Scholar
Lindsay, D. B. (1976). In Protein Metabolism and Nurrition, pp. 183195 [Cole, D. J. A., Boorman, K. N., Buttery, P. J., Lewis, J., Neale, R. J. and Swan, H., editors]. EAAP Publication no 16. London: Butterworths.Google Scholar
Lindsay, D. B. & Williams, R. L. (1971). Proceedings of the Nutrition Society 30, 35A.CrossRefGoogle Scholar
Ministry of Agriculture, Fisheries and Food (1977). Energy Allowances and Feeding Systems for Ruminants. Technical Bulletin no. 33. London: H.M. Stationery Office.Google Scholar
Oldham, J. D., Broster, W. H., Napper, D. J. & Siviter, J. W. (1979). British Journal of Nutrition 42, 149162.CrossRefGoogle Scholar
Oldham, J. D., Hart, I. C. & Bines, J. A. (1978). Proceedings of the Nutrition Society 37, 9A.Google Scholar
Oldham, J. D., Hart, I. C. & Bines, J. A. (1982) British Journal of Nutrition 48, 543547.CrossRefGoogle Scholar
Ørskov, E. R., Grugg, D. A. & Kay, R. N. B. (1977). British Journal of Nutrition 38, 397405.CrossRefGoogle Scholar
Ørskov, E. R., Reid, G. W. & McDonald, I. (1981). British Journal of Nutrition 45, 547555.CrossRefGoogle Scholar
Park, M-S. C. & Liepa, G. U. (1982). Journal of Nutrition 112, 18921898.CrossRefGoogle Scholar
Pearce, S. C. (1952). Journal of the Royal Statistical Society. Series B, Methodological 14, 101106.Google Scholar
Peel, C. J., Fronk, T. J., Bauman, D. E. & Gorewit, R. C. (1982). Journal of Nutrition 112, 17701778.CrossRefGoogle Scholar
Pethick, D. W., Lindsay, D. B., Barker, P. J. & Northrop, A. J. (1981). British Journal of Nutrition 46, 97110.CrossRefGoogle Scholar
Pethick, D. W., Lindsay, D. B., Barker, P. J. & Northrop, A. J. (1983). British Journal of Nutrition 49, 129143.CrossRefGoogle Scholar
Phipps, R. H., Weller, R. F. & Smith, T. (1981). Journal of Agricultural Science, Cambridge 96, 283290.CrossRefGoogle Scholar
Ranawana, S. S. E. & Kellaway, R. C. (1977). British Journal of Nutrition 37, 395402.CrossRefGoogle Scholar
Shipley, R. A. & Clark, R. E. (1972) Tracer Methods for In Vivo Kinetics. New York: Academic Press.Google Scholar
Somogyi, M. (1945). Journal of Biological Chemistry. 160, 6973.CrossRefGoogle Scholar
Storry, J. E. & Millard, D. (1965). Journal of the Science of Food and Agriculture 16, 417420.CrossRefGoogle Scholar
Sugano, M., Ishiwaki, N., Nagata, Y. & Imaizumi, K. (1982). British Journal of Nutrition 48, 211221.CrossRefGoogle Scholar
Sutton, J. D. (1984). Journal of Dairy Science (In the Press).Google Scholar
Tuckley, B. & Storry, J. E. (1974). Lipids 9, 493494.CrossRefGoogle ScholarPubMed
Vermorel, M., Redmond, B., Vernet, J. & Liamadis, D. (1982). In Energy Metabolism of Farm Animals, EAAP Publication no. 29, p. 18 [Edern, A. and Sundstol, S., editors]. Ski, Norway: Informasjonsteknikk A/S.Google Scholar
Vik-Mo, L., Emery, R. S. & Huber, J. T. (1974). Journal of Dairy Science 57, 869877.CrossRefGoogle Scholar
Wels, C. M. (1977) Journal of Chromatography 142, 459468.CrossRefGoogle Scholar
Werner, W., Rey, H. G. & Wielinger, H. (1970). Fresenius Zeitschriftfuer Analytische Chemie 252, 224228.CrossRefGoogle Scholar
Wilson, S., MacRae, J. C. & Buttery, P. J. (1981). Research in Veterinary Science 30, 205212.CrossRefGoogle Scholar
Wilson, S., MacRae, J. C. & Buttery, P. J. (1983). British Journal of Nutrition 50, 303316.CrossRefGoogle Scholar