Hostname: page-component-cd9895bd7-jkksz Total loading time: 0 Render date: 2024-12-23T18:16:13.229Z Has data issue: false hasContentIssue false

The effect of a high dose of 3-hydroxy-3-methylbutyrate on protein metabolism in growing lambs

Published online by Cambridge University Press:  09 March 2007

Isabelle Papet
Affiliation:
Laboratoire d'Etude du Métabolisme Azoté, Institut National de la Recherche Agronomique, Centre de Recherches de Clermont-Ferrand Theix, 63122 Saint-Genès-Champanelle, France
Piotr Ostaszewski
Affiliation:
Department of Animal Physiology, Warsaw Agricultural University, 02-766 Warsaw, Poland
Francoise Glomot
Affiliation:
Laboratoire d'Etude du Métabolisme Azoté, Institut National de la Recherche Agronomique, Centre de Recherches de Clermont-Ferrand Theix, 63122 Saint-Genès-Champanelle, France
Christiane Obled
Affiliation:
Laboratoire d'Etude du Métabolisme Azoté, Institut National de la Recherche Agronomique, Centre de Recherches de Clermont-Ferrand Theix, 63122 Saint-Genès-Champanelle, France
Magali Faure
Affiliation:
Laboratoire d'Etude du Métabolisme Azoté, Institut National de la Recherche Agronomique, Centre de Recherches de Clermont-Ferrand Theix, 63122 Saint-Genès-Champanelle, France
Gerard Bayle
Affiliation:
Laboratoire d'Etude du Métabolisme Azoté, Institut National de la Recherche Agronomique, Centre de Recherches de Clermont-Ferrand Theix, 63122 Saint-Genès-Champanelle, France
Steven Nissen
Affiliation:
Department of Animal Science, Iowa State University, Ames, IA 50011, USA
Maurice Arnal
Affiliation:
Laboratoire d'Etude du Métabolisme Azoté, Institut National de la Recherche Agronomique, Centre de Recherches de Clermont-Ferrand Theix, 63122 Saint-Genès-Champanelle, France
Jean Grizard
Affiliation:
Laboratoire d'Etude du Métabolisme Azoté, Institut National de la Recherche Agronomique, Centre de Recherches de Clermont-Ferrand Theix, 63122 Saint-Genès-Champanelle, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of a high dose of 3-hydroxy-3-methylbutyrate (HMB, a leucine catabolite) on protein metabolism was investigated in growing male lambs fed on hay and concentrate. Concentrate was supplemented with either Ca(HMB)2 (4g/kg) or Ca(C03)2 in experimental (HMB) and control groups respectively. Both groups consisted of six 2-month old lambs. Three complementary methods to study protein metabolism were carried out consecutively 2·5 months after beginning the dietary treatment: whole body phenylalanine fluxes, postprandial plasma free amino acid time course and fractional rates of protein synthesis in skeletal muscles. Feeding a high dose of HMB led to a significant increase in some plasma free amino acids compared with controls. Total, oxidative and non-oxidative phenylalanine fluxes were not modified by dietary HMB supplementation. Similarly, an acute infusion of HMB, in the control group, did not change these fluxes. In skeletal muscles, fractional rates of protein synthesis were not affected by long-term dietary supplementation with HMB. Taken together our results showed that administration of a high dose of HMB to lambs was able to modify plasma free amino acid pattern without any effect on whole-body protein turnover and skeletal muscle protein synthesis

Type
Animal Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Attaix, D., Aurousseau, E., Manghebati, A. & Arnal, M. (1988). Contribution of liver, skin and skeletal muscle to whole-body protein synthesis in the young lamb. British Journal of Nutrition 60, 7784.CrossRefGoogle ScholarPubMed
Attaix, D., Manghebati, A., Grizard, J. & Arnal, M. (1986). Assessment of in vivo protein synthesis in lamb tissues with [3H]valine flooding doses. Biochimica et Biophysica Acta 882, 389397.CrossRefGoogle ScholarPubMed
Bennet, W. M., Connacher, A. A., Scrimgeour, C. M., Smith, K. & Rennie, M. J. (1989). Increase in anterior tibialis muscle protein synthesis in healthy man during mixed amino acid infusion: studies of incorporation of [1-13C] leucine. Clinical Science 76, 447454.CrossRefGoogle ScholarPubMed
Breuillé, D., Farges, M. C., Rosé, F.Arnal, M., Attaix, D. & Obled, C. (1993). Pentoxifylline decreases the body weight loss and muscle protein wasting characteristics of sepsis. American Journal of Physiology 265, E660–E666.Google ScholarPubMed
Buse, M. G. & Reid, S. S. (1975). Leucine. A possible regulator of protein turnover in muscle. Journal of Clinical Investigation 56, 12501261.CrossRefGoogle ScholarPubMed
Christensen, H. N. (1990). Role of amino acid transport and countertransport in nutrition and metabolism. Physiological Reviews 70, 4377.CrossRefGoogle ScholarPubMed
Chua, B. H. L. (1994). Specificity of leucine effect on protein degradation in perfused rat heart. Journal of Molecular and Cellular Cardiology 26, 743751.CrossRefGoogle ScholarPubMed
Chua, B., Siehl, D. L. & Morgan, H. E. (1979). Effect of leucine and metabolites of branched chain amino acids on protein turnover in heart. Journal of Biological Chemistry 254, 83588362.CrossRefGoogle ScholarPubMed
Clarke, J. T. R. & Bier, D. M. (1982). The conversion of phenylalanine to tyrosine in man. Direct measurement by continuous intravenous tracer infusion of L-[ring-2H5] phenylalanine and L-[1-13C] tyrosine in the postabsorptive state. Metabolism 31, 9991005.CrossRefGoogle ScholarPubMed
Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980). A rapid and convenient technique for measuring the rate of protein synthesis in tissues by injection of [3H] phenylalanine. Biochemical Journal 192, 719723.CrossRefGoogle ScholarPubMed
Gatnau, R., Zimmerman, D. R., Nissen, S. L., Wannemuehler, M. & Ewan, R. C. (1995). Effects of excess dietary leucine and leucine catabolites on growth and immune responses in weanling pigs. Journal of Animal Science 73, 159165.CrossRefGoogle ScholarPubMed
Harper, A. E., Miller, R. H. & Block, K. P. (1984). Branched-chain amino acid metabolism. Annual Review of Nutrition 4, 409454.CrossRefGoogle ScholarPubMed
Kilberg, M. S., Stevens, B. R. & Novak, D. A. (1993). Recent advances in mammalian amino acid transport. Annual Review of Nutrition 3, 137165.CrossRefGoogle Scholar
Li, J. B. & Jefferson, L. S. (1978). Influence of amino acid availability on protein turnover in perfused skeletal muscle. Biochimica et Biophysica Acta 544, 351359.CrossRefGoogle ScholarPubMed
Lobley, G. E. (1993). Protein metabolism and turnover. In Quantitative Aspects of Ruminant Digestion and Metabolism, pp. 313339 [Forbes, J. M. and France, J., editors]. Wallingford: C A B International.Google Scholar
Louard, R. J., Barrett, E. J. & Gelfand, R. A. (1990). Effect of infused branched-chain amino acids on muscle and whole-body amino acid metabolism in man. Clinical Science 79, 457466.CrossRefGoogle ScholarPubMed
May, M. E. & Buse, M. G. (1989). Effects of branched-chain amino acids on protein turnover. Diabetes Metabolism Reviews 5, 221245.CrossRefGoogle ScholarPubMed
Miotto, G., Venerando, R., Khurana, K. K., Siliprandi, N. & Mortimore, G. E. (1992). Control of hepatic proteolysis by leucine and isovaleryl-L-carnitine through a common locus: evidence for a possible mechanism of recognition at the plasma membrane. Journal of Biological Chemistry 267, 2206622072.CrossRefGoogle ScholarPubMed
Mosoni, L., Houlier, M. L., Patureau Mirand, P., Bayle, G. & Grizard, J. (1993). Effect of amino acids alone or with insulin on muscle and liver protein synthesis in adult and old rats. American Journal of Physiology 264, E614E620.Google ScholarPubMed
Nair, K. S., Schwartz, R. G. & Welle, S. (1992). Leucine as a regulator of whole body and skeletal muscle protein metabolism in humans. American Journal of Physiology 263, E928–E934.Google ScholarPubMed
Nissen, S., Faidley, T. D., Zimmerman, D. R., Izard, R. & Fisher, C. T. (1994 a). Colostral milk fat percentage and pig performance are enhanced by feeding the leucine metabolite β-hydroxy-β-methyl butyrate to sows. Journal of Animal Science 72, 23312337.CrossRefGoogle ScholarPubMed
Nissen, S., Fuller, J. C., Sell, J., Ferket, P. R. & Rives, D. V. (1994 b). The effect of β-hydroxy-β-methylbutyrate on growth, mortality, and carcass qualities of broiler chickens. Poultry Science 73, 137155.CrossRefGoogle ScholarPubMed
Papet, I., Glomot, F., Grizard, J. & Arnal, M. (1992). Leucine excess under conditions of low or compensated aminoacidemia does not change skeletal muscle and whole-body protein synthesis in suckling lambs during the postprandial period. Journal of Nutrition 122, 23072315.CrossRefGoogle Scholar
Sabourin, P. J. & Bieber, L. L. (1981). Subcellular distribution and partial characterization of an α-ketoisocaproate oxidase of rat liver: formation of β-hydroxyisovaleric acid. Archives of Biochemistry and Biophysics 206, 132144.CrossRefGoogle ScholarPubMed
Sanchez, M., El-Khoury, A. E., Castillo, L., Chapman, T. E. & Young, V. R. (1995). Phenylalanine and tyrosine kinetics in young men throughout a continuous 24-h period, at a low phenylalanine intake. American Journal of Clinical Nutrition 61, 555570.CrossRefGoogle Scholar
Tauveron, I., Larbaud, D., Champredon, C., Debras, E., Tesseraud, S., Bayle, G., Bonnet, Y., Thiéblot, P. & Grizard, J. (1994). Effect of hyperinsulinemia and hyperaminoacidemia on muscle and liver protein synthesis in lactating goats. American Journal of Physiology 267, E877–E885.Google ScholarPubMed
Tesseraud, S., Grizard, J., Debras, E., Papet, I., Bonnet, Y., Bayle, G. & Champredon, C. (1993). Leucine metabolism in lactating and dry goats: effect of insulin and substrate availability. American Journal of Physiology 265, E402–E413.Google ScholarPubMed
Thompson, G. N., Pacy, P. J., Merritt, H., Ford, G. C., Read, M. A., Cheng, K. N. & Halliday, D. (1989). Rapid measurement of whole body and forearm protein turnover using a [2 H5] phenylalanine model. American Journal of Physiology 256, E631–E639.Google ScholarPubMed
Van Koevering, M. T., Dolezal, H. G., Gill, D. R., Owens, F. N., Strasia, C. A., Buachanan, D. S., Lake, R. & Nissen, S. (1994). Effect of β-hydroxy-β-methyl butyrate on performance and carcass quality of feedlot steers. Journal of Animal Science 72, 19271935.CrossRefGoogle ScholarPubMed
Van Koevering, M. & Nissen, S. (1992). Oxidation of leucine and α-ketoisocaproate to β-hydroxy-β-methylbutyrate in vivo. American Journal of Physiology 262, E27–E31.Google ScholarPubMed
Vérité, R. & Peyraud, J. L. (1989). Protein: the PDI system. In Ruminant Nutrition. Recommended Allowances and Feed Tables, pp. 3347 [Jarrige, R., editor]. Paris: John Libbey Eurotext.Google Scholar
Walser, M. (1984). Therapeutic aspects of branched-chain amino and keto acids. Clinical Science 66, 115.CrossRefGoogle ScholarPubMed
Watt, P. W., Corbett, M. E. & Rennie, M. J. (1992). Stimulation of protein synthesis in pig skeletal muscle by infusion of amino acids during constant insulin availability. American Journal Of Physiology 263, E453–E460.Google ScholarPubMed
Zello, G. A., Pencharz, P. B. & Ball, R. O. (1990). Phenylalanine flux, oxidation, and conversion to tyrosine in humans studied with L-[1-13C] phenylalanine. American Journal of Physiology 259, E835–E843.Google Scholar
Zello, G. A., Pencharz, P. B. & Ball, R. O. (1993). Dietary lysine requirement of young adult males determined by oxidation of L-[1-13C] phenylalanine. American Journal of Physiology 264, E677–E685.Google Scholar