Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-29T19:48:45.814Z Has data issue: false hasContentIssue false

The effect of 1-α-hydroxycholecalciferol on calcium and phosphorus metabolism in the lactating ewe

Published online by Cambridge University Press:  09 March 2007

G. D. Braithwaite
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of 1-α-hydroxycholecalciferol (1 α-OH-D3) on calcium and phosphorus metabolism has been studied in ewes at peak lactation by a combination of a mineral balance and a radioisotope technique.

2. The rate of Ca absorption was substantially higher in the treated ewes than in controls. The rates of endogenous loss of Ca into urine, faeces and milk, however, were only slightly higher.

3. In consequence, the net retention of Ca was increased and the loss of skeletal reserves of Ca normally associated with peak lactation, prevented.

4. Although the rate of bone accretion increased slightly, the increase in skeletal retention of Ca resulted mainly from a decrease in the rate of bone resorption.

5. This finding conflicts with the generally held belief that bone resorption is increased by cholecalciferol treatment.

6. The rates of apparent absorption and retention of P were increased by the treatment probably as a result of a direct effect of the 1α-OH-D3 on P absorption.

7. These results provide a possible explanation of the beneficial effect of 1α-OH-D3 in preventing parturient paresis (milk fever) in the dairy cow.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

Agricultural Research Council (1965). The Nutrient Requirements of Farm Livestock, No. 2. Ruminants. London: HM Stationery Office.Google Scholar
Aubert, J.-P. & Milhaud, G. (1960). Biochim. biophys. Acta 39, 122.Google Scholar
Braithwaite, G. D. (1974). Br. J. Nutr. 31, 319.Google Scholar
Braithwaite, G. D. (1975 a). Br. J. Nutr. 33, 309.Google Scholar
Braithwaite, G. D. (1975 b). Br. J. Nutr. 34, 311.Google Scholar
Braithwaite, G. D. (1976). J. Dairy Res. 43, 501.CrossRefGoogle Scholar
Braithwaite, G. D. (1978). Br. J. Nutr. 39, 213.CrossRefGoogle Scholar
Braithwaite, G. D. & Glascock, R. F. (1976). Bienn. Rev. natn. Inst. Res. Dairy.Google Scholar
Braithwaite, G. D., Glascock, R. F. & Riazuddin, Sh. (1969). Br. J. Nutr. 23, 827.CrossRefGoogle Scholar
Braithwaite, G. D., Glascock, R. F. & Riazuddin, Sh. (1970). Br. J. Nutr. 24, 661.Google Scholar
Braithwaite, G. D., Glascock, R. F. & Riazuddin, Sh. (1972). Br. J. Nutr. 28, 269.CrossRefGoogle Scholar
Braithwaite, G. D. & Riazuddin, Sh. (1971). Br. J. Nutr. 26, 215.Google Scholar
Carlsson, A., Lindquist, M. & Magnusson, T. (1952). Acta physiol. scand. 26, 212.CrossRefGoogle Scholar
Cole, C. R., Chamberlain, D. M., Hibbs, J. W., Pounden, W. D. & Smith, C. R. (1957). J. Am. Vet. Med. Ass. 130, 298.Google Scholar
DeLuca, H. F. (1975). Acta orthop. scand. 346, 286.Google Scholar
DeLuca, H. F. (1977). Adv. Clin. Chem. 19, 125.Google Scholar
Fiske, C. H. & Subbarow, Y. (1925). J. biol. Chem. 66, 375.CrossRefGoogle Scholar
Fraser, D. R. & Kodicek, E. (1973). Nature, New Biol. 241, 163.Google Scholar
Hibbs, J. W. & Conrad, H. R. (1960). J. Dairy Sci. 43, 1124.Google Scholar
Hibbs, J. W. & Pounden, W. D. (1955). J. Dairy Sci. 38, 65.Google Scholar
Holick, M. F., Taleva, T. E., Holick, S. A., Schnoes, H. K., DeLuca, H. F. & Gallagher, B. M. (1976). J. biol. Chem. 251, 1020.CrossRefGoogle Scholar
Manston, R. & Payne, J. M. (1964). Br. vet. J. 120, 167.Google Scholar
Olsen, W. G., Jorgensen, N. A., Schultz, L. H. & DeLuca, H. F. (1973). J. Dairy Sci. 56, 889.Google Scholar
Pierides, A. M., Simpson, W., Ward, M. K., Ellis, H. A., Dewar, J. H. & Kerr, D. N. S. (1976). Lancet i, 1092.Google Scholar
Sansom, B. F., Allen, W. M., Davies, D. C., Hoare, M. N., Stenton, J. R. & Vagg, M. J. (1976). Vet. Rec. 99, 310.Google Scholar
Symonds, H. W., Manston, R., Payne, J. M. & Sansom, B. F. (1966). Br. Vet. J. 122, 196.Google Scholar
Tanaka, Y. & DeLuca, H. F. (1971). Archs. Biochem. Biophys. 146, 574.CrossRefGoogle Scholar
Technicon Instruments Corporation (1967). Technicon Method Sheet N-4B. Tarry Town, New York: Technicon Instruments Corporation.Google Scholar
Treacher, T. T. (1970). J. Dairy Res. 37, 289.Google Scholar
Wasserman, R. H. (1975). Cornell Vet. 65, 3.Google Scholar
Wong, R. G., Myrtle, H. C., Tsai, H. C. & Norman, A. W. (1972). J. biol. Chem. 247, 5728.CrossRefGoogle Scholar