Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-29T23:38:13.976Z Has data issue: false hasContentIssue false

Distribution of bacteria in the rumen contents of dairy cows given a diet supplemented with soya-bean oil

Published online by Cambridge University Press:  09 March 2007

Françoise Legay-Carmier
Affiliation:
Laboratorie d'étude du Métabolisme Energétique, INRA-CRZV, THEIX, 63122 Ceyrat, France
D. Bauchart
Affiliation:
Laboratorie d'étude du Métabolisme Energétique, INRA-CRZV, THEIX, 63122 Ceyrat, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Liquid-associated bacteria (LAB) were harvested from the liquid phase (LAB1) and from the solid phase of rumen contents after washing and manual shaking (LAB2). Solid-adherent bacteria (SAB) were recovered after washing and pummelling the total particles (SAB1). The distribution and the chemical composition of these three bacterial compartments were investigated in four dairy cows fitted with rumen fistulas. The animals received successively a diet consisting of one part hay and one part barley-based concentrate (diet C) and the same diet containing free soya-bean oil (79 g/kg dry matter (DM); diet So).

2. The efficiency of removal of SABI from total particles of rumen digesta collected I h after feeding, was calculated from the diaminopimelic acid content in particles and of the corresponding detached bacteria. It was 24% on diet C and 18% on diet So (P < 0.05), using a combination of homogenizing and ‘stomaching’ treatments in saline (9 g sodium chloride/1) (reference treatment). For diets C and So respectively it was lowered by Tween in saline solution (1 g/l; 22.7 and 17.8 %, not significant), but was increased when using a previous chilling (6 h at 4°) of homogenized particles before stomaching in saline (28.8 and 24.7%, P < 0.05) and in Tween 80 in saline (1 g/l; 26.6 and 20.8%, P < 0.05).

3. The extent of removal of SABI from the solid fraction of rumen digesta by the reference treatment decreased with decreasing particle size; it was at the highest for particles retained on 4 and 2 mm sieves (62.1–82.1 %) and still elevated for particles retained on 0.8, 0.4 and 0.1 mm sieves (41.3–57.9%). It was very much reduced for particles smaller than 0.1 mm (11.7–14.5 %), suggesting the occurrence of favourable conditions for the adhesion of SAB firmly resistant to removal (SAB2).

4. The concentration of total SAB (SABI +SAB2) in particles collected l h after feeding was lower (P < 0.05) in diet C (190 g/kg DM) than in diet So (234 g/kg DM). Values averaged 595–645 g/kg DM for particles smaller than 0.1 mm, but only 61 and 81–98 g/kg DM for particles retained on 4 and 0.4 mm sieves, and on a 0.1 mm sieve respectively. No significant differences were noted between diets but the effect of particle size was highly significant (< 0.1 mm v. others).

5. Postprandial variations of concentrations of total SAB on total particles exhibited a large increase I h after feeding in diet So (P < 0.05). Similar but amplified variations were observed for LAB in both diets (P < 0.05).

6. Total bacterial mass amounted to 213 and 231 g DM/kg whole-rumen contents DM in diets C and So respectively 6 h after feeding. Mean percentages of total SAB (69.8), LAB1 (7.3) and LAB2 (22.9) in total rumen contents were not significantly modified by the lipid level of the diet.

Type
Rumen Physiology
Copyright
Copyright © The Nutrition Society 1989

References

Akin, D. E. (1980). Evaluation by electron microscopy and anaerobic culture of types of rumen bacteria associated with digestion of forage cell walls. Applied and Environmental Microbiology 39, 242252.Google Scholar
Association of Official Analytical Chemists (1980). Official Methods of Analysis 13th ed., pp. 127129. Washington DC: Association of Official Analytical Chemists.Google Scholar
Bates, D. B., Gillett, J. A., Barao, S. A. & Bergen, W. G. (1985). The effect of specific growth rate and stage of growth on nucleic acid-protein values of pure cultures and mixed ruminal bacteria. Journal of Animal Science 61, 713724.CrossRefGoogle Scholar
Bauchart, D., Doreau, M. & Kindler, A. (1987). Effect of fat and lactose supplementation on digestion in dairy cows. 2. Long-chain fatty acids. Journal of Dairy Science 70, 7180.CrossRefGoogle ScholarPubMed
Bauchart, D. & Legay-Carmier, F. (1988). Effets de la prise du repas et de la teneur en lipides du régime sur la quantité de bactéries libres et liées aux particules du contenu de rumen chez la vache laitière. Reproduction, Nutrition, Développement 28, 139140.Google Scholar
Bauchart, D., Legay-Carmier, F., Doreau, M. & Jouany, J. P. (1986). Effets de l'addition de matières grasses non protégées à la ration de la vache laitière sur la concentration et la composition chimique des bactéries et des protozoaires. Reproduction, Nutrition, Développement 26, 309310.Google Scholar
Bauchart, D., Legay-Carmier, F., Jouany, J. P., Michalet-Doreau, B. & Doreau, M. (1989). Effects de I'addition de palmitostéarine ou d'huile de soja sur les protozoaires du rumen chez la vache laitière et chez la mouton. Reproduction, Nutrition, Développement 29 (In the press).Google Scholar
Bauchart, D., Vérité, R. & Rémond, B. (1984). Long-chain fatty acid digestion in lactating cows fed fresh grass from spring to autumn. Canadian Journal of Animal Science 64, Suppl., 330331.Google Scholar
Berg, B., Hofsten, B. V. & Pettersson, G. (1972). Electromicroscopic observation on the degradation of cellulose fibres by Cellvibrio fulcus and Sporocytophaga myxococcoides. Journal of Applied Bacteriology 35, 215219.Google Scholar
Bergen, W. G. (1979). Factors affecting growth yields of micro-organisms in the rumen. Tropical Animal Production 4, 1320.Google Scholar
Bryant, M. P., Robinson, I. M. & Chu, H. (1959). Observations on the nutrition of Bacteroides succinogenes –a ruminal cellulolytic bacteria. Journal of Dairy Science, 42, 18311847.Google Scholar
Cheng, K. J., Akin, D. E. & Costerton, J. W. (1977). Rumen bacteria: interaction with particulate dietary components and response to dietary variations. Federation Proceedings 36, 193197.Google Scholar
Colombier, J. (1981). Contribution à l'étude du rôle des protozoaires ciliés du rumen dans l'apport d'azote microbien dans le duodénum du ruminant. Thèse de Docteur-Ingéniéur, Université de Clermont II.Google Scholar
Costerton, J. W., Geesey, G. G. & Cheng, K. J. (1978). How bacteria stick. Scientific American 238, 8695.Google Scholar
Coto, G., Geerken, C. M. & Cruz, R. (1983). Rate of microbial mass synthesis in the rumen in vitro using coast cross I Bermuda grass Cuban Journal of Agricultural Science 17, 275284.Google Scholar
Craig, W. M., Broderick, G. A. & Ricker, D. B. (1987a). Quantitation of microorganisms associated with the particulate phase of ruminal ingesta. Journal of Nutrition 117, 5662.Google Scholar
Craig, W. M., Brown, D. R., Broderick, G. A. & Ricker, D. B. (1987b) Post-prandial compositional changes of fluid and particle-associated ruminal micro-organisms. Journal of Animal Science 65, 10421048.Google Scholar
Czerkawski, J. W. (1976). Chemical composition of microbial matter in the rumen. Journal of the Science of Food and Agriculture 27, 621632.CrossRefGoogle ScholarPubMed
Czerkawski, J. W. (1986). Degradation of solid feeds in the rumen: spatial distribution of microbial activity and its consequences. In Control of Digestion and Metabolism in Ruminants. Proceedings of the Sixth International Symposium on Ruminant Physiology, Banff, Canada pp. 158172 [Milligan, L.P., Grovum, W. L. and Dobson, A., editors]. Englewood Cliffs, New Jersey: Prentice Hall.Google Scholar
Dafaalla, B. F. M. & Kay, R. N. B. (1980). Effect of hay particle size on retention time, dry matter digestibility and rumen pH in sheep. Proceedings of the Nutrition Society 39, 71A.Google Scholar
Dehority, B. A. & Grubb, J. A. (1980). Effect of short-term chilling of rumen contents on viable bacterial numbers. Applied and Environmental Microbiology 39, 376381.Google Scholar
Devendra, C. & Lewis, D. (1974). The interaction between dietary lipids and fibre in the rumen. Animal Production 19, 6776.Google Scholar
Ehle, F. R., Murphy, M. R. & Clark, J. H. (1982). In situ particle size reduction and the effect of particle size on degradation of crude protein and dry matter in the rumen of dairy steers. Journal of Dairy Science 65, 963971.Google Scholar
Faichney, G. J. (1980). Measurement in sheep of the quantity and composition of rumen digesta and of the fractional outflow rates of digesta constituents. Australian Journal of Agricultural Research 31, 11291137.Google Scholar
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). Simple method for the isolation and purification of total lipids from animal tissues. Journal of Biological Chemistry 226, 497509.CrossRefGoogle ScholarPubMed
Forsberg, C. W. & Lam, K. (1975). Use of adenosine 5-triphosphate as an indicator of the microbiota biomass in the rumen. Applied and Environmental Microbiology 33, 528537.CrossRefGoogle Scholar
Grenet, E. (1966). Les particules végétales des fécès de mouton. Annales de Zootechnie 15, 303321.Google Scholar
Harfoot, C. G. (1981). Lipid metabolism in the rumen. In Lipid Metabolism in Ruminant Animals pp. 2255 [Christie, W. W. editor]. New York: Pergamon Press.Google Scholar
Henderson, C. (1973). The effects of fatty acids on pure cultures of rumen bacteria. Journal of Agricultural Science, Cambridge 81, 107112.Google Scholar
INRA (1978). Tableaux de la valeur nutritive des aliments. In Alimentation des Ruminants pp. 519555 [Jarrige, R. editor]. Versailles: INRA Publications.Google Scholar
Latham, M. J. (1980). Adhesion of rumen bacteria to plant cell walls. In Microbial Adhesion to Surfaces pp. 339350 [Berkeley, R.C. W., Lynch, J. M., Melliney, J., Rutter, R. P. and Vincent, B., editors]. Chichester: Ellis Howard.Google Scholar
Lefaivre, J. & Fléchet, J. (1983). Fistulation et canule du rumen pour bovin, ovin, caprin, Cahier des Techniques de l' INRA 3, 2332.Google Scholar
Legay-Carmier, F. & Bauchart, D. (1988). Extraction des bactéries de la phase solide du rumen; influence de différents traitements. Reproduction, Nutrition, Développement 28, 141142.Google Scholar
Mackie, R. I., Therion, J. J., Gilchrist, F. M. C. & Ndhlovu, M. (1983). Processing ruminal ingesta to release bacteria attached to feed particles. South Africa Journal of Animal Science 13, 5254.Google Scholar
Macleod, G. K. & Buchanan-Smith, J. G. (1972). Digestibility of hydrogenated tallow, saturated fatty acids and soybean oil-supplemented diets by sheep. Journal of Animal Science 35, 890895.Google Scholar
McLoughlin, A. J. (1983). Substrate-to-biomass ratio as a process control parameter in heterogeneous populations growing on complex substrates. Biotechnology and Bioengineering 25, 29052919.Google Scholar
Maczulack, A. E., Dehority, B. A. & Palmquist, D. L. (1981). Effects of long-chain fatty acids on growth of rumen bacteria. Applied and Environmental Microbiology 42, 856862.Google Scholar
Mann, H. B. & Whitney, D. R. (1947). On a test of whether one of two random variables is stochastically larger than the other. Annals of Mathematics and Statistics 18, 5060.Google Scholar
Mason, V. C. & Bech-Andersen, S. (1975). The estimation of 2,6-diaminopimelic acid in digesta and faeces using acid ninhydrin reagent. Zeitschrift für Tierphysiologie, Tierernährung und Futtermittelkunde 36, 224229.Google Scholar
Merry, R. J. & McAllan, A. B. (1983). A comparison of the chemical composition of mixed bacteria harvested from the liquid and solid fractions of rumen digesta. British Journal of Nutrition 50, 701709.CrossRefGoogle ScholarPubMed
Minato, H., Endo, A., Higuchi, M., Comoto, Y. & Vemura, T. (1966). Ecological treatise on the rumen fermentation. I. The fractionation of bacteria attached to the rumen digesta solids. Journal of General Applied Microbiology 12, 3952.CrossRefGoogle Scholar
Minato, H. & Suto, T. (1978). Technique for fractionation of bacteria in rumen microbial ecosystem. II. Attachment of bacteria isolated from bovine rumen to cellulose powder in vitro and elution of bacteria attached therefrom. Journal of General Applied Microbiology 24, 116.Google Scholar
Ørskov, E. R., Hine, R. S. & Grubb, D. A. (1978). The effect of urea on digestion and voluntary intake by sheep of diets supplemented with fat. Animal Production 27, 244245.Google Scholar
Sutton, J. D., Knight, R. K., McAllan, A. B. & Smith, R. H. (1983). Digestion and synthesis in the rumen of sheep given diets supplemented with free and protected oils. British Journal of Nutrition 49, 419432.Google Scholar
Ushida, K., Lassalas, B. & Jouany, J. P. (1985). Determination of assay parameters for RNA analysis in bacterial and duodenal samples by spectrophotometry. Influence of sample treatment and preservation. Reproduction, Nutrition, Développement 25, 10371046.CrossRefGoogle ScholarPubMed
Vermorel, M. (1978). Feed evaluation for ruminants. II. The new energy systems proposed in France. Livestock Production Science 5, 347365.Google Scholar
Williams, A. G. & Strachan, N. H. (1984). Polysaccharide degrading enzymes in microbial populations from the liquid and solid fractions of bovine rumen digesta. Canadian Journal of Animal Science 64, Suppl., 58–59.Google Scholar
Wolstrup, J. & Jensen, K. (1978). Adenosine triphosphate and deoxyribonucleic acid in the alimentary tract of cattle fed different nitrogen sources. Journal of Applied Bacteriology 45, 4956.Google Scholar
Zinn, R. A. & Owens, F. N. (1986). A rapid procedure for purine measurement and its use for estimating net ruminal protein synthesis. Canadian Journal of Animal Science 66, 157166.Google Scholar