Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T02:30:42.706Z Has data issue: false hasContentIssue false

Dissimilation of 1,2-propanediol by rumen micro-organisms

Published online by Cambridge University Press:  24 July 2007

J. W. Czerkawski
Affiliation:
Hannah Research Institute, Ayr KA6 5HL
Grace Breckenridge
Affiliation:
Hannah Research Institute, Ayr KA6 5HL
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The main products of fermentation of 1,2-propanediol were n-propanol and propionic acid, but variable amounts of acetic acid and carbon dioxide were also formed. The concentrations of an intermediate propionaldehyde increased and then decreased.

2. A tentative scheme is suggested, showing that 1,2-propanediol is first dehydrated to propionaldehyde, which is then reduced to n-propanol. The scheme also explains the formation of propionic and acetic acids and shows how the metabolism of 1,2-propanediol is related to that of rhamnose.

3. Experiments with samples of rumen contents from animals on various diets showed that 1,2-propanediol was metabolized most rapidly when the animals were given molassed sugar-beet pulp. The rates of dissimilation of the diol increased with the concentration of rumen contents and with the concentration of substrate.

4. The dissimilation of 1,2-propanediol by rumen micro-organisms resulted in an increased uptake of hydrogen. The metabolic hydrogen, arising from the inhibition of methane production by chloroform, appeared to be better utilized than the gaseous hydrogen.

5. Oxygen gas did not affect the utilization of 1,2-propanediol, but the diol increased the uptake of oxygen by the rumen contents. The hydrogen and carbon balances were better when 1,2-propanediol was incubated anaerobically than in the presence of oxygen.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1973

References

REFERENCES

Abeles, R. H. & Lee, H. A. Jr (1961). J. biol. Chem. 236, 2347.CrossRefGoogle Scholar
Brownstein, A. M. & Abeles, R. H. (1961). J. biol. Chem. 236, 1199.CrossRefGoogle Scholar
Clapperton, J. L. & Czerkawski, J. W. (1972 a). Br. J. Nutr. 27, 553.CrossRefGoogle Scholar
Clapperton, J. L. & Czerkawski, J. W. (1972 b). Proc. Nutr. Soc. 31, 55A.Google Scholar
Conway, E. J. (1962). Microdiffusion Analysis and Volumetric Error, p. 234. London: Crosby, Lockwood and Son.Google Scholar
Cottyn, B. G. & Boucque, C. V. (1968). J. agric. Fd Chem. 16, 105.CrossRefGoogle Scholar
Czerkawski, J. W. (1966). Br. J. Nutr. 20, 833.CrossRefGoogle Scholar
Czerkawski, J. W. & Breckenridge, G. (1969). Br. J. Nutr. 23, 51.CrossRefGoogle Scholar
Czerkawski, J. W. & Breckenridge, C. (1970). Lab. Pract. 19, 717.Google Scholar
Czerkawski, J. W. & Breckenridgr, G. (1971). Lab. Pract. 20, 403.Google Scholar
Czerkawski, J. W. & Breckenridge, G. (1972). Br. J. Nutr. 27, 131.CrossRefGoogle Scholar
Czerkawski, J. W. & Clapperton, J. L. (1968). Lab. Pract. 17, 994.Google Scholar
Emery, R. S., Burg, N., Brown, L. D. & Blank, G. N. (1964). J. Dairy Sci. 47, 1074.CrossRefGoogle Scholar
Emery, R. S., Brown, R. E. & Black, A. L. (1967). J. Nutrition 92, 348.CrossRefGoogle Scholar
Huff, E. (1959). Analyt. Chem. 31, 1626.CrossRefGoogle Scholar
Huff, E. & Rudney, H. (1959). J. biol. Chem. 234, 1060.CrossRefGoogle Scholar
Jones, L. R. & Riddick, J. A. (1957). Analyt. Chem. 29, 1214.CrossRefGoogle Scholar
Kluyver, A. J. & Schnellen, C. (1937). Enzymologia 4, 7.Google Scholar
Ladd, J. N. & Walker, D. J. (1959). Biochem. J. 71, 365.Google Scholar
McDougall, E. I. (1948). Biochem. J. 43, 99.CrossRefGoogle Scholar
Noble, R. C. & Czerkawski, J. W. (1972). Analyst (in the Press).Google Scholar
Rudney, H. (1950). Arch Biochem. 29, 231.Google Scholar
Rudney, H. (1954). J. biol. Chem. 210, 361.CrossRefGoogle Scholar
Shull, K. H. & Miller, O. N. (1960). J. biol. Chem. 235, 551.CrossRefGoogle Scholar
Ting, S.-M., Sellinger, O. Z. & Miller, O. N. (1964). Biochim. biophys. Acta 89, 217.Google Scholar
Toraya, T., Sugimoto, Y., Tamao, Y., Shimizu, S. & Fukui, F. (1971). Biochemistry, N. Y. 10, 3475.CrossRefGoogle Scholar
Vogel, A. I. (1951). Practical Organic Chemistry. London, New York and Toronto: Longman, Green and Co.Google Scholar
Waldo, D. R. & Schultz, L. H. (1960). J. Dairy Sci. 43, 496.CrossRefGoogle Scholar