Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-03T02:08:41.943Z Has data issue: false hasContentIssue false

Digestive and metabolic effects of potato and maize fibres in human subjects

Published online by Cambridge University Press:  07 September 2009

C. Cherbut
Affiliation:
Human Nutrition Research Centre, INRA, BP 71627, 44316 Nantes cedex 03, France
A.-C. Aube
Affiliation:
Human Nutrition Research Centre, INRA, BP 71627, 44316 Nantes cedex 03, France
N. Mekki
Affiliation:
INSERM U-130, 9 avenue Mozart, 13009 Marseilles, France
C. Dubois
Affiliation:
INSERM U-130, 9 avenue Mozart, 13009 Marseilles, France
D. Lairon
Affiliation:
INSERM U-130, 9 avenue Mozart, 13009 Marseilles, France
J.-L. Barry
Affiliation:
Human Nutrition Research Centre, INRA, BP 71627, 44316 Nantes cedex 03, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The physiological effects of dietary fibres in humans are due to their physico-chemical properties. However, it is difficult to predict these effects simply by measuring certain characteristics in vitro. Studies in human subjects are still required to assess the effectiveness of new substrates. The aim of the present study in healthy human subjects was to evaluate the effects of two novel fibres, potato (PF) and maize (MF), on fasting and postprandial blood concentrations of carbohydrate and lipid metabolites as well as on stool ouput and transit time. The chemical composition, water-binding capacity (WBC) and fermentative properties of the fibres were also characterized in order to determine their possible involvement in digestive and metabolic effects. Stools, as well as breath and blood samples, were collected after consumption for 1 month of either a basal diet (control) or a basal diet supplemented with fibre (15 g/d). MF resisted fermentation better than PF and had lower digestibility. However, both fibres increased faecal output of dry matter, neutral sugars and water. There was an inverse relationship between stool weight and orofaecal transit time, although only MF significantly reduced transit time. Orocaecal transit was lengthened by PF, probably because of its high WBC. PF ingestion also decreased postprandial plasma levels of total and esterified cholesterol but had no effect on fasting concentrations. In contrast, MF lowered fasting cholesterolaemia and increased free:esterified cholesterol. These particular physiological and fermentative properties suggest that PF and MF would be suitable ingredients in a healthy diet.

Type
Human and Clinical Nutrition
Copyright
Copyright © The Nutrition Society 1997

References

REFERENCES

Anderson, J. W., Deakins, D. A. & Bridges, S. R. (1990). Soluble fiber: hypocholesterolemic effects and proposed mechanisms. In Dietary Fiber: Chemistry, Physiology, and Health Effects, pp. 339363 [Kritchevsky, D., Bonfield, C. and Anderson, J. W., editors]. New York: Plenum Press.CrossRefGoogle Scholar
Anderson, J. W., Gilinsky, N. H., Deakins, D. A., Smith, S. F., O'Neal, D. S., Dillon, D. W. & Oeltgen, P. R. (1991). Lipid responses of hypercholesterolemic men to oat-bran and wheat-bran intake. American Journal of Clinical Nutrition 54, 678686.CrossRefGoogle ScholarPubMed
Anderson, J. W., Story, L., Sieling, B., Chen, W.-J. L., Petro, M. S. & Story, J. (1984). Hypocholesterolemic effects of oat bran or bean intake for hypercholesterolemic men. American Journal of Clinical Nutrition 40, 11461155.CrossRefGoogle ScholarPubMed
Auffret, A., Barry, J. L. & Thibault, J. F. (1993). Effect of chemical treatments of sugar beet fibre on their physico-chemical properties and on their in vitro fermentation. Journal of the Science of Food and Agriculture 61, 195203.CrossRefGoogle Scholar
Bagley, R., Ford, M. & Grenn, L. F. (1976). Changes in plasma lipids after substituting glucose-syrup solids for table sucrose. Proceedings of the Nutrition Society 35, 68A69A.Google ScholarPubMed
Bardon, T. & Fioramonti, J. (1983). Nature of the effects of bran on digestive transit time in pigs. British Journal of Nutrition 50, 685690.CrossRefGoogle ScholarPubMed
Borel, P., Lairon, D., Senft, M., Chautan, M. & Lafont, H. (1989). Wheat bran and wheat germ: effect on digestion and intestinal absorption of dietary lipids in the rat. American Journal of Clinical Nutrition 49, 11921202.CrossRefGoogle ScholarPubMed
Bossetti, B. M., Kocher, L. M., Moranz, J. F. & Falko, J. M. (1984). The effects of physiologic amounts of simple sugars on lipoprotein, glucose and insulin levels in normal subjects. Diabetes Care 7, 309312.CrossRefGoogle ScholarPubMed
Brillouet, J. M. & Mercier, C. (1981). Fractionation of wheat bran carbohydrates. Journal of the Science of Food and Agriculture 32, 243251.CrossRefGoogle Scholar
Buccolo, G. & David, H. (1973). Quantitative determination of serum triglycerides by the use of enzymes. Clinical Chemistry 19, 476482.CrossRefGoogle Scholar
Cara, L., Dubois, C., Borel, P., Armand, M., Senft, M., Portugal, H., Pauli, A. M., Bernard, P. M. & Lairon, D. (1992). Effects of oat bran, rice bran, wheat fiber, and wheat germ on postprandial lipemia in healthy adults. American Journal of Clinical Nutrition 55, 8188.CrossRefGoogle ScholarPubMed
Cherbut, C. (1995). Effects of short chain fatty acids on gastrointestinal motility. In Physiological and Clinical Aspects of Short Chain Fatty Acids, pp. 191207 [Cummings, J. H., Rombeau, J. L. and Sakata, T., editors]. Cambridge: Cambridge University Press.Google Scholar
Cherbut, C., Bruley des Varannes, S., Schnee, M., Rival, M., Galmiche, J. P. & Delort-Laval, J. (1994). Involvement of small intestinal motility in blood glucose response to dietary fibre in man. British Journal of Nutrition 71, 675685.CrossRefGoogle ScholarPubMed
Cherbut, C. & Ruckebusch, Y. (1985). The effect of indigestible particles on digestive transit time and colonic motility in dogs and pigs. British Journal of Nutrition 53, 549557.CrossRefGoogle ScholarPubMed
Cherbut, C., Salvador, V., Barry, J. L., Doulay, F. & Delort-Laval, J. (1991). Dietary fibre effects on intestinal transit in man: involvement of their physicochemical and fermentative properties. Food Hydrocolloids 5, 1522.CrossRefGoogle Scholar
Cummings, J. H. (1986). The effect of dietary fiber on fecal weight and composition. In Handbook of Dietary Fiber in Human Nutrition, pp. 211280 [Spiller, G. A., editor]. Boca Raton: CRC Press.Google Scholar
Cummings, J. H. & Wiggins, H. S. (1976). Transit through the gut measured by analysis of a single stool. Gut 17, 219223.CrossRefGoogle ScholarPubMed
Dubois, C., Cara, L., Armand, M., Borel, P., Senft, M., Portugal, H., Pauli, A. M., Bernard, P. M., Lafont, H. & Lairon, D. (1993). Effects of pea and soybean fibre on postprandial lipaemia and lipoproteins in healthy adults. European Journal of Clinical Nutrition 47, 508520.Google ScholarPubMed
Edwards, C. A. (1995). Dietary fibre, fermentation and the colon. In Dietary Fibre: Mechanisms of Action in Human Physiology and Metabolism, pp. 5160 [Cherbut, C., Barry, J. L., Lairon, D. and Durand, M., editors]. Paris: John Libbey Eurotext.Google Scholar
Englyst, H. N., Kingman, S. M. & Cummings, J. H. (1992). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46, S33S50.Google ScholarPubMed
Glore, S. R., Van Treek, D., Knehans, A. W. & Guild, M. (1994). Soluble fiber and serum lipids: a literature review. Journal of the American Dietetic Association 94, 425436.CrossRefGoogle ScholarPubMed
Grider, J. R. & Jin, J. G. (1994). Distinct populations of sensory neurons mediate the peristaltic reflex elicited by muscle stretch and mucosal stimulation. Journal of Neurosciences 14, 28542860.CrossRefGoogle ScholarPubMed
Guillon, F., Renard, M. G. C. C., Hospers, J., Thibault, J. F. & Barry, J. L. (1995). Characterisation of residual fibres from fermentation of pea and apple fibres by human faecal bacteria. Journal of the Science of Food and Agriculture 68, 521529.CrossRefGoogle Scholar
Gurr, M. I. & Asp, N. G. (1994). Dietary Fibre. ILSI Europe Concise Monograph Series. Washington: ILSI Press.Google Scholar
Hoebler, C., Barry, J. L., David, A. & Delort-Laval, J. (1989). Rapid acid hydrolysis of plant cell wall polysaccharides and simplified quantitative determination of their neutral monosaccharides by gas-liquid chromatography. Journal of Agricultural and Food Chemistry 37, 360367CrossRefGoogle Scholar
Hyden, S. (1955). A turbidimetric method for the determination of higher polyethylene glycols in biological materials. Kungl. Lantbrukshögskolans Annaler (Annual Records of the Agricultural College) 22, 139145.Google Scholar
Jenkins, D. J. A., Reynolds, D., Leeds, A. R., Waller, A. L. & Cummings, J. H. (1979). Hypocholesterolemic action of dietary fiber unrelated to fecal bulking effects. American Journal of Clinical Nutrition 32, 24302435.CrossRefGoogle Scholar
Jenkins, D. J. A., Wolever, T. M. S., Rao, A. V., Hegele, R. A., Mitchell, S., Ransom, T., Boctor, D., Spadafora, P. J., Mehling, C., Katzmann Relle, L., Connelly, P. W., Story, J. A., Furamoto, E. J., Corey, P. & Würsch, P. (1993). Effect on serum lipids of very high fiber intakes in diets low in saturated fat and cholesterol. New England Journal of Medicine 329, 2126.CrossRefGoogle ScholarPubMed
Jouany, J. P. (1982). Volatile fatty acid and alcohol determination in digestive contents, silage juices, bacterial cultures and anaerobic fermentor contents. Science des Aliments 2, 131144.Google Scholar
Kashtan, H., Stern, H. S., Jenkins, D. J. A., Jenkins, A. L., Hay, K., Marcon, N., Minkin, S. & Bruce, W. R. (1992). Wheat bran and oat bran supplements effects on blood lipids and lipoproteins. American Journal of Clinical Nutrition 55, 976980.CrossRefGoogle ScholarPubMed
Kestin, M., Moss, R., Clifton, P. M. & Nestel, P. J. (1990). Comparative effects of three cereal brans on plasma lipids, blood pressure, and glucose metabolism in mildly hypercholesterolemic men. American Journal of Clinical Nutrition 52, 661666.CrossRefGoogle ScholarPubMed
Kuniak, L. & Marchessault, R. H. (1972). Study of the crosslinking reaction between epichlorhydrin and starch. Die Stärke 4, 110116.CrossRefGoogle Scholar
Lampe, J. W., Slavin, J. L., Baglien, K. S., Thompson, W. O., Duane, W. C. & Zavoral, J. H. (1991). Serum lipid and fecal bile acid changes with cereal, vegetable, and sugar beet fiber feeding. American Journal of Clinical Nutrition 52, 12351241.CrossRefGoogle Scholar
McBurney, M. L., Horvath, P. J., Jeraci, J. L. & Van Soest, P. J. (1985). Effect of in vitro fermentation using human faecal inoculum on the water-holding capacity of dietary fibre. British Journal of Nutrition 53, 1724.CrossRefGoogle ScholarPubMed
McConnell, A. A., Eastwood, M. A. & Mitchell, W. D. (1974). Physical characteristics of vegetable foodstuffs that could influence bowel function. Journal of the Science of Food and Agriculture 25, 14571464.CrossRefGoogle ScholarPubMed
Macdonald, I. (1964). The influence of dietary carbohydrates on the lipid pattern in serum and in adipose tissue. Clinical Science 27, 2330.Google ScholarPubMed
Macfarlane, G. T. & Cummings, J. H. (1991). The colonic flora, fermentation, and large bowel digestive function. In The Large Intestine: Physiology, Pathophysiology, and Disease, pp. 5191 [Phillips, S. F., Pemberton, J. H. and Shorter, R. G., editors]. New York: Raven Press.Google Scholar
Morgan, L. M., Tredger, J. A., Shavila, Y., Travis, J. S. & Wright, J. (1993). The effect of non-starch polysaccharide supplementation on circulating bile acids, hormones and metabolite levels following a fat meal in human subjects. British Journal of Nutrition 70, 491501.CrossRefGoogle ScholarPubMed
Mortensen, P. B. & Nordgaard-Andersen, I. (1993). The dependence of the in vitro fermentation of dietary fibre to short chain fatty acids on the contents of soluble nonstarch polysaccharides. Scandinavian Journal of Gastroenterology 28, 418422.CrossRefGoogle Scholar
Narducci, F., Bassotti, G., Gaburri, M. & Morelli, A. (1987). 24 hour manometric recording of colonic motor activity in healthy man. Gut 28, 1725.CrossRefGoogle ScholarPubMed
Prosky, L., Asp, N. G., Schweizer, T. F., De Vries, J. W. & Furda, I. (1988). Determination of insoluble, soluble, and total dietary fiber in foods and food products: interlaboratory study. Journal of the Association of Official Analytical Chemists 71, 10171023.Google ScholarPubMed
Renaud, S., Godsey, F., Ortchanian, E. & Baudier, F. (1979). Table de Composition des Aliments (Food Composition Table). Asnières: Astra Calvé.Google Scholar
Salvador, V., Cherbut, C., Barry, J. L., Bertrand, D., Bonnet, C. & Delort-Laval, J. (1993). Sugar composition of dietary fibre and short-chain fatty acid production during in vitro fermentation by human bacteria. British Journal of Nutrition 70, 189197.CrossRefGoogle ScholarPubMed
Shinnick, F. L., Hess, R. L., Fischer, M. H. & Marlett, J. A. (1989). Apparent nutrient absorption and upper gastrointestinal transit with fiber-containing enteral feedings. American Journal of Clinical Nutrition 49, 471475.CrossRefGoogle ScholarPubMed
Siedel, J., Hagele, E. O., Ziegenhorn, J. & Wahlefeld, A. W. (1983). Reagent for the enzymatic determination of serum total cholesterol with improved lipolytic efficiency. Clinical Chemistry 29, 10751080.CrossRefGoogle ScholarPubMed
Sievet-Desrumeaux, C., Dedomder-Decoopman, E., Fruchart, J. C., Dewailli, P. & Sezille, G. (1979). Immunochemical determination of human apolipoprotein B by laser nephelometry. Clinica Chimica Acta 95, 405408.CrossRefGoogle Scholar
Sievet-Desrumeaux, C., Dedomder-Decoopman, E., Fruchart, J. C., Dewailli, P., Sezille, G. & Jaillard, J. (1980). Immunochemical determination of human apolipoprotein A-1 by laser nephelometry. Clinica Chimica Acta 107, 145148.CrossRefGoogle Scholar
Spiller, G. A. (1986), Suggestions for a basis on which to determine a desirable intake of dietary fiber. In Handbook of Dietary Fiber in Human Nutrition, pp. 281283 [Spiller, G. A., editor.] Boca Raton: CRC Press.Google Scholar
Stephen, A. (1994). Propionate — sources and effect on lipid metabolism. In Short Chain Fatty Acids. Falk Symposium no. 73, pp. 260271 [Binder, H. J., Cummings, J. H. and Soergel, K. H., editors]. Lancaster: MTP Press Limited.Google Scholar
Stevens, B. J. H. & Selvendran, R. R. (1988). Changes in composition and structure of wheat bran resulting from the action of human faecal bacteria in vitro. Carbohydrate Research 183, 311319.CrossRefGoogle ScholarPubMed
Stevens, B. J. H., Selvendran, R. R., Bayliss, C. E. & Turner, R. (1988). Degradation of cell wall material of apple and wheat bran by human faecal bacteria in vitro. Journal of the Science of Food and Agriculture 44, 151166.CrossRefGoogle Scholar
Story, J. A. & Kritchevsky, D. (1976). Comparison of the binding of various bile acids and bile salts by several types of fiber. Journal of Nutrition 106, 12921294.CrossRefGoogle ScholarPubMed
Takayama, M., Itoh, S., Nagasaki, T. & Tanimizu, I. (1977). A new enzymatic method for choline containing phospholipids. Clinica Chimica Acta 79, 9398.Google ScholarPubMed
Thibault, J. F. (1979). Automatisation du dosage des substances pectiques par la méthode au métahydroxydiphényl (An automatised method for the determination of pectic substances). Lebensmittel-Wissenschaft und Technologie 12, 247251.Google Scholar
Van Soest, P., Horvath, P., McBurney, M., Jeraci, J. & Allen, M. (1983). Some in vitro and in vivo properties of dietary fibers from noncereal sources. In Unconventional Sources of Dietary Fiber. Symposium Series no. 214, pp. 135141 [Furda, I., editor]. Washington, DC: American Chemical Society.CrossRefGoogle Scholar
Wolever, T. M. S. (1995). Dietary fibre and lipid metabolism in humans. In Dietary Fibre: Mechanisms of Action in Human Physiology and Metabolism, pp. 6981 [Cherbut, C., Barry, J. L., Lairon, D. and Durand, M., editors]. Paris: John Libbey Eurotext.Google Scholar
Wolever, T. M. S., Jenkins, D. J. A., Mueller, S., Boctor, D. L., Ransom, T. P. P., Patten, R., Chao, E. S. M., McMillan, K. & Fulgoni, V. (1994). Method of administration influences the serum cholesterol-lowering effect of psyllium. American Journal of Clinical Nutrition 59, 10551059.CrossRefGoogle ScholarPubMed