Hostname: page-component-78c5997874-4rdpn Total loading time: 0 Render date: 2024-11-20T01:26:44.637Z Has data issue: false hasContentIssue false

The digestion of fibre by pigs

2. Volatile fatty acid concentrations in large intestine digesta

Published online by Cambridge University Press:  24 July 2007

George Stanogias
Affiliation:
School of Agriculture and Forestry, University of Melbourne, Parkville, Victoria 3052, Australia
G. R. Pearce
Affiliation:
School of Agriculture and Forestry, University of Melbourne, Parkville, Victoria 3052, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of including lupin (Lupinus sp.) hulls, maize cobs, wheat bran and lucerne (Medicago sutiva) stems in a basal fibre-free diet on the concentrations and the relative proportions of volatile fatty acids (VFA) in the proximal colon of pigs, 17–18 h after feeding, was studied.

2. Concentrations of total VFA in the proximal colon increased with increasing levels of neutral-detergent fibre (NDF) intake, and this increase was highly dependent on the source of NDF in the diet.

3. Molar proportions of the VFA were significantly affected by the level of NDF intake only in the cases of acetic and butyric acids, whereas the source of dietary NDF had a marked influence on the molar proportions of all acids.

4. The results indicate that the extent of fermentative breakdown of fibre in the pig intestine can be influenced substantially by the type and the level of fibre in the diet.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

REFERENCES

Argenzio, R. A. & Southworth, M. (1975). American Journal of Physiology 228, 454460.CrossRefGoogle Scholar
Baker, F., Nasr, H., Morrice, F. & Bruce, J. (1950). Journal of Pathological Bacteriology 62, 617638.CrossRefGoogle Scholar
Blaxter, K. L. (1962). The Energy Metabolism of Ruminants. London: Hutchinson.Google Scholar
Clemens, E. T., Stevens, C. E. & Southworth, M. (1975). Journal of Nutrition 105, 759768.CrossRefGoogle Scholar
Cranwell, P. D. (1968). Nutrition Abstracts and Reviews 38, 721730.Google Scholar
Elsden, S. R., Hitchcock, M. W. S., Marshall, R. A. & Phillipson, A. T. (1946). Journal of Experimental Biology 22, 191202.CrossRefGoogle Scholar
Erwin, E. S., Marco, G.J. & Emergy, E. M. (1961). Journal of Dairy Science 44, 17681770.CrossRefGoogle Scholar
Farrell, D. J. & Johnson, K. A. (1972). Animal Production 14, 209217.Google Scholar
Friend, D. W., Cunningham, H. M. & Nicholson, J. W. G. (1962). Canadian Journal of Animal Science 42, 5562.CrossRefGoogle Scholar
Friend, D. W., Cunningham, H. M. & Nicholson, J. W. G. (1963). Canadian Journal of Animal Science 43, 156168.CrossRefGoogle Scholar
Gargallo, J. & Zimmerman, D. R. (1980). Journal of Animal Science 51, 121126.CrossRefGoogle Scholar
Imoto, S. & Namioka, S. (1978). Journal of Animal Science 47, 467478.CrossRefGoogle Scholar
Ludvigsen, J. B. & Thorbek, G. (1961). Final Report on the VIIIth International Congress of Animal Production, p. 114.Google Scholar
Mason, V. C. & Just, A. (1976). Zeitschrift für Tiererphysiologie, Tierernährung und Futtermittelkunde 36, 301310.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1973). Statistical Methods, 6th ed. Ames, Iowa: Iowa State University Press.Google Scholar
Stanogias, G. & Pearce, G. R. (1985). British Journal of Nutrition 53, 513530.CrossRefGoogle Scholar
Van Soest, J. P. (1978). American Journal of Clinical Nutrition 31, 512520.Google Scholar
Yang, M. G., Manoharan, K. & Young, A. K. (1969). Journal of Nutrition 97, 260264.CrossRefGoogle Scholar