Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-22T22:32:30.891Z Has data issue: false hasContentIssue false

Digestion and physiological properties of resistant starch in the human large bowel

Published online by Cambridge University Press:  09 March 2007

John H Cummings
Affiliation:
Dunn Clinical Nutrition Centre, Hills Road, Cambridge CB2 2DH
Emily R Beatty
Affiliation:
Dunn Clinical Nutrition Centre, Hills Road, Cambridge CB2 2DH
Susan M Kingman
Affiliation:
Dunn Clinical Nutrition Centre, Hills Road, Cambridge CB2 2DH
Sheila A Bingham
Affiliation:
Dunn Clinical Nutrition Centre, Hills Road, Cambridge CB2 2DH
Hans N Englyst
Affiliation:
Dunn Clinical Nutrition Centre, Hills Road, Cambridge CB2 2DH
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The digestion of four sources of resistant starch (RS) has been studied in twelve healthy volunteers who ate controlled diets for 15 d periods. RS from potato, banana, wheat and maize (17−30 g/d) was compared with a starch-free diet, a diet containing wheat starch that was fully digested in the small intestine, and with 18·4 g NSP from bran/d. RS increased stool wet weight by 1·6 g/d per g RS fed for potato, 1·7 for banana, 2·5 for wheat and 2·7 for maize, but this was significantly less than bran NSP at 4·9 g/g. RS was extensively digested in twenty-seven of thirtyfour diet periods but five subjects were unable to break down one or two of the RS sources. Faecal N and energy excretion were increased. RS decreased NSP breakdown and RS2 (resistant starch granules) tended to prolong transit time. All forms of RS increased faecal total short-chain fatty acid excretion. RS2 (from potato and banana) gave greater proportions of acetate in faeces, and RS3 (retrograded starch from wheat and maize) more propionate. We have concluded that RS2 and RS3 are broken down in the human gut, probably in the colon although in 26% of cases this breakdown was impaired. RS exerts mild laxative properties, predominantly through stimulation of biomass excretion but also through some sparing of NSP breakdown.

Type
Resistant starch: Measurement and properties
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Achour, L., Flourie, B., Briet, F., Pellier, P., Marteau, P. & Rambaud, J-C. (1994). Gastrointestinal effects and energy value of polydextrose in healthy non-obese men. American Journal of Clinical Nutrition 59, 13621368.CrossRefGoogle Scholar
Adiotomre, J., Eastwood, M. A., Edwards, C. A. & Brydon, W. G. (1990). Dietary fiber: in vitro methods that anticipate nutrition and metabolic activity in humans. American Journal of Clinical Nutrition 52, 128134.CrossRefGoogle ScholarPubMed
Anderson, I. H., Levine, A. S. & Levitt, M. D. (1981). Incomplete absorption of the carbohydrate in all-purpose wheat flour. New England Journal of Medicine 304, 891892.CrossRefGoogle ScholarPubMed
Andrieux, C., Pacheco, E. D., Bouchet, B., Gallent, D. & Szylit, O. (1992). Contribution of the digestive tract microflora to amylomaize starch degradation in the rat. British Journal of Nutrition 67, 489499.CrossRefGoogle ScholarPubMed
Betian, H. G., Lineham, B. A., Bryant, M. P. & Holdeman, L. V. (1977). Isolation of a cellulolytic Bacteroides sp. from human faeces. Applied and Environmental Microbiology 33, 10091010.CrossRefGoogle Scholar
Branch, W. & Cummings, J. H. (1978). A comparison of radio-opaque pellets and chromium sesquioxide as inert markers in studies requiring accurate faecal collections. Gut 19, 371376.CrossRefGoogle ScholarPubMed
British Nutrition Foundation (1990). Complex Carbohydrates in Foods. Report of the British Nutrition Foundation's Task Force. London:Chapman & Hall.Google Scholar
Chapman, R. W., Sillery, J. K., Graham, M. M. & Saunders, D. R. (1985). Absorption of starch by healthy ileostomates: effect of transit time and of carbohydrate load. American Journal of Clinical Nutrition 41, 12441248.CrossRefGoogle ScholarPubMed
Crapo, P. A., Reaven, G. & Olefsky, J. (1976). Plasma glucose and insulin responses to orally administered simple and complex carbohydrates. Diabetes 25, 741747.CrossRefGoogle ScholarPubMed
Cummings, J. H. (1983). Fermentation in the human large intestine: evidence and implications for health. Lancet i, 12061209.CrossRefGoogle Scholar
Cummings, J. H. (1984). Microbial digestion of complex carbohydrates in man. Proceedings of the Nutrition Society 43, 3544.CrossRefGoogle ScholarPubMed
Cummings, J. H. (1993). The effect of dietary fiber on fecal weight and composition. In CRC Handbook of Dietary Fiber in Human Nutrition, 2nd ed., pp. 263349 [Spiller, G. A., editor]. Boca Raton: CRC Press.Google Scholar
Cummings, J. H. (1995). Short chain fatty acids. In Human Colonic Bacteria: Nutritional, Physiological and Pathological Aspects, pp. 101130 [Macfarlane, G. T. and Gibson, G. R. editors]. Boca Raton, FL: CRC Press.Google Scholar
Cummings, J. H., Bingham, S. A., Heaton, K. W. & Eastwood, M. A. (1992). Fecal weight, colon cancer risk and dietary intake of non-starch polysaccharides (dietary fiber). Gastroenterology 103, 17831789.CrossRefGoogle Scholar
Cummings, J. H., Jenkins, D. J. A. & Wiggins, H. S. (1976). Measurement of the mean transit time of dietary residue through the human gut. Gut 17, 210218.CrossRefGoogle ScholarPubMed
Cummings, J. H., Pomare, E. W., Branch, W. J., Naylor, C. P. E. & Macfarlane, G. T. (1987). Short chain fatty acids in human large intestine, portal, hepatic and venous blood. Gut 28, 12211227.CrossRefGoogle ScholarPubMed
Englyst, H. N., Bingham, S. A., Runswick, S. A., Collinson, E. & Cummings, J. H. (1988). NSP in fruit, vegetables and nuts. Journal of Human Nutrition and Dietetics 1, 247286.CrossRefGoogle Scholar
Englyst, H. N., Bingham, S. A., Runswick, S. A., Collinson, E. & Cummings, J. H. (1989). NSP in cereal products. Journal of Human Nutrition and Dietetics 2, 253271.CrossRefGoogle Scholar
Englyst, H. N. & Cummings, J. H. (1985). Digestion of the polysaccharides of some cereal foods in the human small intestine. American Journal of Clinical Nutrition 42, 778787.CrossRefGoogle ScholarPubMed
Englyst, H. N. & Cummings, J. H. (1986). Digestion of the polysaccharides of banana (Musa paradisiaca sapientum) in man. American Journal of Clinical Nutrition 44, 4250.CrossRefGoogle Scholar
Englyst, H. N. & Cummings, J. H. (1987). Digestion of the polysaccharides of potato in the small intestine of man. American Journal of Clinical Nutrition 45, 423431.CrossRefGoogle ScholarPubMed
Englyst, H. N., Hay, S. & Macfarlane, G. T. (1987). Polysaccharide breakdown by mixed populations of human faecal bacteria. FEMS Microbiology Ecology 95, 163171.CrossRefGoogle Scholar
Englyst, H. N., Kingman, S. M. & Cummings, J. H. (1992 a). Classification and measurement of nutritionally important starch fractions. European Journal of Clinical Nutrition 46, S33–/S50.Google ScholarPubMed
Englyst, H. N., Kingman, S. M., Hudson, G. J. & Cummings, J. H. (1996). Measurement of resistant starch in vitro and in vivo. British Journal of Nutrition 75, 749755.CrossRefGoogle ScholarPubMed
Englyst, H. N. & Macfarlane, G. T. (1986). Breakdown of resistant and readily digestible starch by human gut bacteria. Journal of the Science of Food and Agriculture 37, 699706.CrossRefGoogle Scholar
Englyst, H. N., Quigley, M. E., Hudson, G. J. & Cummings, J. H. (1992 b). Determination of dietary fibre as nonstarch polysaccharides by gas-liquid chromatography. Analyst 117, 17011714.CrossRefGoogle ScholarPubMed
Englyst, H., Wiggins, H. S. & Cummings, J. H. (1982). Determination of the non-starch polysaccharides in plant foods by gas-liquid chromatography of constituent sugars as alditol acetates. Analyst 107, 307318.CrossRefGoogle ScholarPubMed
Flourie, B., Florent, C., Jouany, J-P., Thivend, P., Etanchaud, F. & Rambaud, J-C. (1986). Colonic metabolism of wheat starch in healthy humans. Gastroenterology 90, 111119.CrossRefGoogle ScholarPubMed
Flourie, B., Leblond, A., Florent, C., Rautureau, M., Bisalli, A. & Rambaud, J-C. (1988). Starch malabsorption and breath gas excretion in healthy humans consuming low- and high-starch diets. Gastroenterology 95, 356363.CrossRefGoogle ScholarPubMed
Gibson, G. R., Beatty, E. R., Wang, X. & Cummings, J. H. (1995). Selective stimulation of bifidobacteria in the human colon by oligofructose and inulin. Gastroenterology 108, 975982.CrossRefGoogle ScholarPubMed
Gibson, G. R., Macfarlane, S. & Cummings, J. H. (1990). The fermentability of palysaccharides by mixed human faecal bacteria in relation to their suitability as bulk-forming laxatives. Letters in Applied Microbiology 11, 251254.CrossRefGoogle Scholar
Hamberg, O., Runessen, J. J. & Gudmand-Hoyer, E. (1989). Inhibition of starch absorption by dietary fibre. Scandinavian Journal of Gastroenterology 24, 103109.CrossRefGoogle ScholarPubMed
Jenkins, D. J. A., Wolever, T. M. S., Taylor, R. H., Barker, H. M. & Fielden, H. (1980). Exceptionally low blood glucose response to dried beans:comparison with other carbohydrate foods. British Medical Journal 2, 578580.CrossRefGoogle Scholar
Kritchevsky, D. & Bonfield, C. (editors) (1995). Dietary Fiber in Health and Disease. St. Paul, MN: Eagan Press.Google Scholar
McBurney, M. I. (1986). Increasing starch intake in the human diet. American Journal of Clinical Nutrition 44, 310311 (Letter).CrossRefGoogle ScholarPubMed
Macfarlane, G. T. & Englyst, H. N. (1986). Starch utilization by the human large intestinal microflora. Journal of Applied Bacteriology 60, 195201.CrossRefGoogle ScholarPubMed
Macfarlane, G. T., Gibson, G. R., Beatty, E. R. & Cummings, J. H. (1992). Estimation of short-chain fatty acid production from protein by human intestinal bacteria based on branched-chain fatty acid measurements. FEMS Microbiology Ecology 101, 8188.CrossRefGoogle Scholar
McIntyre, A., Young, G. P., Taranto, T., Gibson, P. R. & Ward, P. B. (1991). Different fibers have different regional effects on luminal contents of rat colon. Gastroenterology 101, 12741281.CrossRefGoogle ScholarPubMed
Mathers, J. C. & Dawson, L. D. (1991). Large bowel fermentation in rats eating processed potatoes. British Journal of Nutrition 66, 313329.CrossRefGoogle ScholarPubMed
Muir, J. G. & O'Dea, K. (1993). The validation of an in vitro assay for predicting the amount of starch that escapes digestion in the small intestine of humans. American Journal of Clinical Nutrition 57, 540546.CrossRefGoogle Scholar
O'Dea, K., Nestel, P. J. & Antonoff, L. (1980). Physical factors influencing postprandial glucose and insulin responses to starch. American Journal of Clinical Nutrition 33, 760765.CrossRefGoogle ScholarPubMed
Paul, A. A. & Southgate, D. A. T. (1978). McCance and Widdowson's The Composition of Foods, 4th ed. London: H.M. Stationery Office.Google Scholar
Phillips, J., Muir, J. G., Birkett, A., Lu, Z. X., Jones, P. G., O'Dea, K. & Young, G. P. (1995). Effect of resistant starch on fecal bulk and fermentation-dependent events in humans. American Journal of Clinical Nutrition 62, 121130.CrossRefGoogle ScholarPubMed
Pomare, E. W., Branch, W. J. & Cummings, J. H. (1985). Carbohydrate fermentation in the human colon and its relation to acetate concentration in venous blood. Journal of Clinical Investigation 75, 14481454.CrossRefGoogle ScholarPubMed
Scheppach, W., Fabian, C., Ahrens, F., Spengler, M. & Kasper, H. (1988 a). Effect of starch malabsorption on colonic function and metabolism in humans. Gastroenterology 95, 15491555.CrossRefGoogle ScholarPubMed
Scheppach, W., Fabian, C., Sachs, M. & Kasper, H. (1988 b). The effect of starch malabsorption on fecal shortchain fatty acid excretion in man. Scandinavian Journal of Gastroenterology 23, 755759.CrossRefGoogle ScholarPubMed
Schofield, W. N., Schofield, C. & James, W. P. T. (1985). Basal metabolic rate. Human Nutrition: Clinical Nutrition 39C, 196.Google ScholarPubMed
Shetty, P. S. & Kurpad, A. V. (1986 a). Increasing starch intake in human diet increases fecal bulking. American Journal of Clinical Nutrition 43, 210212.CrossRefGoogle ScholarPubMed
Shetty, P. S. & Kurpad, A. V. (1986 b). Increasing starch intake in human diet. American Journal of Clinical Nutrition 44, 311 (Letter).CrossRefGoogle Scholar
Silvester, K. R., Englyst, H. N. & Cummings, J. H. (1995). Ileal recovery of starch from whole diets containing resistant starch measured in vitro and fermentation of ileal effluent. American Journal of Clinical Nutrition 62, 403411.CrossRefGoogle ScholarPubMed
Spiller, G. A. (editor) (1992). CRC Handbook of Dietary Fiber in Human Nutrition, 2nd ed. Boca Raton: CRC Press.Google Scholar
Stephen, A. M. & Cummings, J. H. (1980). Mechanism of action of dietary fibre in the human colon. Nature 284, 283284.CrossRefGoogle ScholarPubMed
Stephen, A. M., Haddad, A. C. & Phillips, S. F. (1983). Passage of carbohydrate into the colon. Gastroenterology 85, 589595.CrossRefGoogle ScholarPubMed
Tomlin, J. & Read, N. W. (1990). The effect of resistant starch on colon function in humans. British Journal of Nutrition 64, 589595.CrossRefGoogle ScholarPubMed
Van Munster, I. P., Tangerman, A. & Nagengast, F. M. (1994). Effect of resistant starch on colonic fermentation, bile acid metabolism and mucosal proliferation. Digestive Diseases and Sciences 39, 834842.CrossRefGoogle ScholarPubMed
Wang, X. & Gibson, G. R. (1993). Effects of the in vitro fermentation of oligofructose and inulin by bacteria growing in the human large intestine. Journal of Applied Bacteriology 70, 373380.CrossRefGoogle Scholar
Weaver, G. A., Krause, J. A., Miller, T. L. & Wolin, M. J. (1989). Constancy of glucose and starch fermentations by two different human faecal microbial communities. Gut 30, 1925.CrossRefGoogle ScholarPubMed
Weaver, G. A., Krause, J. A., Miller, T. L. & Wolin, M. J. (1992). Cornstarch fermentation by the colonic microbial community yields more butyrate than does cabbage fiber fermentation; cornstarch fermentation rates correlate negatively with methanogenesis. American Journal of Clinical Nutrition 55, 7077.CrossRefGoogle ScholarPubMed
Van der Westhuizen, J., Mbizro, M. & Jones, J. J. (1972). Unrefined carbohydrate and glucose tolerance. Lancet ii, 719 (Letter).CrossRefGoogle Scholar
Wolever, T. M. S., Cohen, Z., Thompson, L. U., Thorne, M. J., Jenkins, M. J. A., Prokipchuk, E. J. & Jenkins, D. J. A. (1986). Ileal loss of available carbohydrate in man:comparison of a breath hydrogen method with direct measurement using a human ileostomy model. American Journal of Gastroenterology 81, 115122.Google ScholarPubMed
Wolf, M. J., Khoo, U. & Inglett, G. E. (1977). Partial digestibility of cooked amylomaize starch in humans and mice. Die Starke 12, 401405.CrossRefGoogle Scholar
World Health Organization (1985). Energy and Protein Requirements. Technical Report Series no. 724. Geneva: WHO.Google Scholar