Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T11:45:02.832Z Has data issue: false hasContentIssue false

Dietary protein intake and 3-methylhistidine excretion in the rat

Published online by Cambridge University Press:  09 March 2007

L. C. Ward
Affiliation:
Department of Applied Biochemistry and Nutrition, University of Nottingham, School of Agriculture, Sutton Bonington, Loughborough, LE12 5RD
P. J. Buttery
Affiliation:
Department of Applied Biochemistry and Nutrition, University of Nottingham, School of Agriculture, Sutton Bonington, Loughborough, LE12 5RD
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Rats were fed for 14 d on diets containing 50, 150 or 250 g/kg casein as the protein source. The daily excretion of Nt-methylhistidine (His(τMe)), a non-re-utilized amino acid, was determined.

2. His(τMe) excretion/100 g body-weight appeared to be unaffected by increasing the concentration of dietary protein from 150 to 250 g/kg. Assuming no change in the proportion of muscle in the animals these results are indicative of no change in myofibrillar protein catabolic rate. The excretion rate/100 g body-weight of the animal given 50 g/kg casein was lower than the other two treatments, especially towards the end of the 14 d treatment period. Thus at this time the myofibrillar-protein catabolic rate was lower than in the animals fed on the higher protein diet.

3. In the animals fed on the high protein diet there was a tendency for this (τMe) excretion rate/100 g body-weight to increase with age.

4. Nitrogen balance and creatinine excretion results are also presented.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1980

References

REFERENCES

Armstrong, W. G. (1966). In Techniques in Amino Acid Analysis, p. 73 [Schmidt, D. I. editor]. Geneva: Technicon International Division S.A.Google Scholar
Association of Official Analytical Chemists (1975). Official Methods of Analysis, 12th ed.Washington, DC: Association of Official Analytical Chemists.Google Scholar
Atkin, G. E. & Ferdinand, W. (1970). Analyt. Biochem. 38, 313.CrossRefGoogle Scholar
Bates, P. C., Grimble, G. K. & Millward, D. J. (1980). Proc. Nutr. Soc. 38, 136A.Google Scholar
Earl, C. A., Everett, A. W. & Sparrow, M. P. (1975). Proc. Aust. Physiol. Pharmac. Soc. 6, 108.Google Scholar
Goldberg, A. L., Etlinger, J. D., Goldspink, D. R. & Jablecki, C. (1975). Med. Sci. Sports 7, 185.Google Scholar
Gudbjarnason, S., Telerman, M., & Bing, R. (1964). Am. J. Physiol. 206, 294.Google Scholar
Harris, C. I. & Milne, G. (1978). Proc. Nutr. Soc. 38. 11A.Google Scholar
Harris, C. I. & Milne, G. (1980). Biochem. Soc. Trans. (In the Press).Google Scholar
Haverberg, L. N., Deckelbaum, L., Bilmazes, C., Munro, H. N. & Young, V. R. (1975). Biochem. J. 19, 503.CrossRefGoogle Scholar
Miller, S. A. (1969). In Mammalian Protein Metabolism III p. 183 [Muno, H. N. editor]. New York and London: Academic Press.CrossRefGoogle Scholar
Millward, D. J. (1970). Clin. Sci. 39, 577.Google Scholar
Millward, D. J., Garlick, P. J., Stewart, R. J. C., Nnanyelugo, D. O. & Waterlow, J. C. (1975). Biochem. J. 150, 235.Google Scholar
Nishizawa, N., Shimbo, M., Hareyama, S. & Funabiki, R. R. (1977). Br. J. Nutr. 37, 345.Google Scholar
Owen, J. A., Iggo, B., Scandrett, F. J. & Stewart, C. P. (1954). Biochem. J. 58, 426.Google Scholar
Payne, P. R. & Stewart, R. J. C. (1972). Lab. Anim. 6, 135.CrossRefGoogle Scholar
Poulter, H. N., Rangeley, W. R. D. & Lawrie, R. A. (1977). Ann. Nutr. Alim. 31, 245.Google Scholar
Rao, B. S. N. & Nagabhushan, U. S. (1973). Life Sci. 12, 205.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods, 6th ed., Ch. 10. Ames, Iowa: Iowa State University Press.Google Scholar
Swick, R. W. & Song, H. (1974). J. Anim. Sci. 38, 1150.Google Scholar
Tomas, F. M., Munro, H. N. & Young, V. R. (1979). Biochem. J. 179, 139.CrossRefGoogle Scholar
Trenkle, A. (1974). J. Anim. Sci. 38, 1142.Google Scholar
Wannemacher, R. W. (1975). In Total Parenteral Nutrition. Premises and Promises, Ch. 7 [Ghandimi, H. editor]. New York: J. Wiley and Sons.Google Scholar
Ward, L. C. (1976). Muscle protein metabolism, PhD Thesis, University of Nottingham.Google Scholar
Ward, L. C. & Buttery, P. J. (1978). Life Sci. 23, 1103.CrossRefGoogle Scholar
Ward, L. C. & Buttery, P. J. (1979). Biochim Biophys Acta 587, 415.Google Scholar
Young, V. R., Alexis, S. D., Baliga, B. S., Munro, H. N. & Muecke, W. (1972). J. Biol. Chem. 247, 3592.Google Scholar
Young, V. R., Haverberg, L. N., Bilmazes, C. & Munro, H. N. (1973). Metabolism 21, 1429.Google Scholar