Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T07:43:19.772Z Has data issue: false hasContentIssue false

Dietary fibre fermentation in the rat intestinal tract: effect of adaptation period, protein and fibre levels, and particle size

Published online by Cambridge University Press:  24 July 2007

Margareta Nyman
Affiliation:
Department of Food Chemistry, Chemical Centre, PO Box 124, University of Lund, S-22100 Lund, Sweden
Nils-Georg ASP
Affiliation:
Department of Food Chemistry, Chemical Centre, PO Box 124, University of Lund, S-22100 Lund, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The fermentative breakdown of one resistant type of dietary fibre (wheat bran) and one easily-fermented fibre (low-methoxyl pectin) was studied with respect to the length of the adaptation period and fibre level in the diet. The breakdown of the resistant fibre was also studied regarding the protein level in the diet and particle size of the fibre.

2. Prolongation of the adaptation period from 4 to 18 d decreased the faecal dry weight considerably. The excretion of dietary fibre however, was similar, whereas a decrease in faecal nitrogen excretion could be seen.

3. A level of dietary protein of less than 50 g/kg impaired the fermentation of wheat-bran fibre, whereas a level higher than 100 g protein/kg did not further increase the degree of fermentation of the fibre.

4. The particle size did not change the fermentability of the fibre, equal amounts of the main components of coarse and milled bran being excreted in faeces.

5. Two different levels of wheat-bran fibre (48 and 96 g/kg) in the diet did not influence the fibre breakdown. Similar results were obtained with two levels of fibre from low-methoxyl pectin (42 and 84 g/kg), but a tendency towards a decreased percentage of faecal excretion of uronic acids was seen at the lower level of low-methoxyl pectin.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1985

References

Asp, N.-G., Johansson, C.-G., Hallmer, H. & Siljeström, M. (1983). Journal of Agricultural and Food Chemistry 31, 476482.CrossRefGoogle Scholar
Bertrand, D., Brillouet, J. M., Rasper, V. F., Bouchet, B. & Mercier, C. (1981). Cereal Chemistry 58, 375380.Google Scholar
Björck, I., Nyman, M. & Asp, N.-G. (1984). Cereal Chemistry 61, 174179.Google Scholar
Brodribb, A. J. M. & Groves, C. (1978). Gut 19, 6063.CrossRefGoogle Scholar
Bylund, M. & Donetzhuber, A. (1968). Svensk Papperstidning 15, 505508.Google Scholar
Cummings, J. H. (1982). In Colon and Nutrition, pp. 91103 [Kasper, H. and Goebell, H., editors]. Lancaster: MTP Press Ltd.Google Scholar
Cummings, J. H., Southgate, D. A. T., Branch, W. J. & Wiggins, H. S. (1979). British Journal of Nutrition 41, 477485.CrossRefGoogle Scholar
Cunningham, H. M., Friend, D. W. & Nicholson, J. W. G. (1962). Canadian Journal of Animal Science 42, 167175.CrossRefGoogle Scholar
Dintzis, F. R., Legg, L. M., Deatherage, W. L., Baker, F. L., Inglett, G. E., Jacob, R. A., Reck, S. J., Munoz, J. M., Klevay, L. M., Sandstead, H. H. & Shuey, W. C. (1979). Cereal Chemistry 56, 123127.Google Scholar
Ehle, F. R. (1980). The influence of dietary fibers on fermentation in the large intestine of humans and pigs. PhD Thesis, Cornell University.Google Scholar
Ehle, F. R., Jeraci, J. L., Robertson, J. B. & Van Soest, P. J. (1982). Journal of Animal Science 55, 10711081.CrossRefGoogle Scholar
Frank, G. R., Aherne, F. X. & Jensen, A. H. (1983). Journal of Animal Science 57, 645654.CrossRefGoogle Scholar
Garrison, M. V., Reid, R. L., Fawley, P. & Breidenstein, C. P. (1978). Journal of Nutrition 108, 191195.CrossRefGoogle Scholar
Gramstorff Fetzer, S., Kies, C. & Fox, H. M. (1979). Cereal Chemistry 56, 3437.Google Scholar
Heller, S. N., Hackler, L. R., Rivers, J. M., Van Soest, P. J., Roe, D. A., Lewis, B. A. & Robertson, J. (1980). American Journal of Clinical Nutrition 33, 17341744.CrossRefGoogle Scholar
Kenne, L. & Lindberg, B. (1983). In The Polysaccharides, vol. 2, pp. 287363 [Aspinall, G. O., editor]. New York: Academic Press Inc.CrossRefGoogle Scholar
Keys, J. E. Jr, Van Soest, P. J. & Young, E. P. (1970). Journal of Animal Science 31, 11721177.CrossRefGoogle Scholar
Kies, C., Sanchez, V. E. & Fox, H. M. (1984). Journal of Food Science 49, 815837.CrossRefGoogle Scholar
Nyman, M. & Asp, N.-G. (1982). British Journal of Nutrition 47, 357366.CrossRefGoogle Scholar
Nyman, M., Asp, N.-G., Pedersen, B. & Eggum, B. O. (1985). Journal of Cereal Science 3, 207219.CrossRefGoogle Scholar
Sawardeker, J. S., Sloneker, J. H. & Jeanes, A. (1965). Analytical Chemistry 37, 16021604.CrossRefGoogle Scholar
Stephen, A. M. & Cummings, J. H. (1979). Gut 20, 722729.CrossRefGoogle Scholar
Stephen, A. M. & Cummnings, J. H. (1980). Nature 284, 283284.CrossRefGoogle Scholar
Theander, O. & Åman, P. (1979). Swedish Journal of Agricultural Research 9, 97106.Google Scholar
Van Dokkum, W., Pikaar, N. A. & Thissen, J. T. N. M. (1983). British Journal of Nutrition 50, 6174.CrossRefGoogle Scholar
Winer, B. J. (1971). In Statistical Principles in Experimental Design, 2nd ed. New York: McGraw-Hill.Google Scholar