Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-11-29T16:52:50.288Z Has data issue: false hasContentIssue false

Dietarily-induced changes in voluntary ethanol consumption and ethanol metabolism in the rat

Published online by Cambridge University Press:  09 March 2007

Leena Pekkanen
Affiliation:
The Research Laboratories of the State Alcohol Monopoly (Alko), Box 350, SF-00101 Helsinki 10, Finland
K. Eriksson
Affiliation:
The Research Laboratories of the State Alcohol Monopoly (Alko), Box 350, SF-00101 Helsinki 10, Finland
Marja-Liisa Sihvonen
Affiliation:
Department of Chemistry, Helsinki University of Technology, SF-02150 Espoo 15, Finland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The voluntary ethanol consumption, ethanol elimination rate and blood acetaldehyde level after intraperitoneal injection of ethanol were studied in rats receiving diets with highly imbalanced proportions of dietary protein, carbohydrate and fat.

2. The rats, which received the low-protein diet containing 0.05 of the total energy as protein, 0.80 as carbohydrate and 0.15 as fat, drank only approximately half as much ethanol as did the control group, which received 0.30 of its total food energy from protein, 0.55 from carbohydrate and 0.15 from fat. Ethanol elimination rate in the low-protein group was decreased and the blood acetaldehyde level after ethanol injection was markedly increased.

3. On the high-fat diet, which contained 0.30 of the total energy from protein, 0.05 from carbohydrate and 0.65 from fat, the rats drank significantly more ethanol than did the rats on the control diet; their ethanol elimination rate was decreased but their blood acetaldehyde level was not affected.

4. In conclusion, the strong decrease in voluntary ethanol drinking by the low-protein group may have been caused by the increased acetaldehyde accumulation in the blood, but a particularly low blood acetaldehyde level was not one of the factors inducing excessive ethanol drinking in the high-fat group.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

Ahtee, L. & Eriksson, K. (1973). Ann. N.Y. Acad. Sci. 215, 126.CrossRefGoogle Scholar
Ahtee, L. & Eriksson, K. (1975). Acta physiol. scand. 93, 563.CrossRefGoogle Scholar
Beerstecher, E., Reed, J. G., Brown, W. D. & Berry, L. J. (1951). Univ. Tex. Publs, no. 5109, p. 115.Google Scholar
Berg, R. L., Stotz, E. & Westerfeld, W. W. (1944). J. biol. Chem. 152, 51.CrossRefGoogle Scholar
Bingham, R. A. & Elliot, R. M. (1971). Analyt. Chem. 43, 43.CrossRefGoogle Scholar
Brady, R. A. & Westerfeld, W. W. (1947). Q. Jl Stud. Alc. 7, 499.CrossRefGoogle Scholar
Brown, R. V. (1969). Q. Jl Stud. Alc. 30, 592.CrossRefGoogle Scholar
Brown, R. V. & Hutcheson, D. P. (1973). Q. Jl Stud. Alc. 34, 758.CrossRefGoogle Scholar
Coates, M. E., O'Donoghue, P. N., Payne, P. R. & Ward, R. J. (1969). Laboratory Animal Handbook. 2. Dietary Standards for Laboratory Rats and Mice. London: Laboratory Animals Ltd.Google Scholar
Davidson, S., Meiklejohn, A. P. & Passmore, R. (1959). Human Nutrition and Dietetics, p. 14. Edinburgh and London: Livingstone Ltd.Google Scholar
Erämetsä, O. & Haukka, M. (1970). Suom. Kemistilehti B43, 189.Google Scholar
Erämetsä, O., Lounamaa, K. J. & Haukka, M. (1969). Suom. Kemistilehti B42, 363.Google Scholar
Eriksson, C. J. P. (1973). Biochem. Pharmac. 22, 2283.CrossRefGoogle Scholar
Eriksson, K. (1969). Ann. Zool. fenn. 6, 227.Google Scholar
Eriksson, K., Pekkanen, L., Forsander, O. & Ahtee, L. (1975). Finn. Found. Alc. Stud. 24, 15.Google Scholar
Forsander, O. & Eriksson, C. J. P. (1972). Finn. Found, Alc. Stud. 20, 43.Google Scholar
Graham, C. E., Smith, E. P.., Hier., S. W. & Klein, P. (1947). J. biol. Chem. 168, 711.CrossRefGoogle Scholar
Heikonen, M. (1973). X-ray fluorescence spectroscopic methodology in trace element analyses: a critique and an application to the assessment of the trace elements status of cows given protein-free feed. Doctoral Thesis, Helsinki University of Technology, Finland.Google Scholar
Hillbom, M. (1967). Japan. J. Stud. Alc. 2, 111.Google Scholar
Horn, R. S. & Manthei, R. W. (1965). J. Pharmac. exp. Ther. 147, 385.Google Scholar
Israel, Y., Salazar, I. & Rosenmann, E. (1968). J. Nutr. 96, 499.CrossRefGoogle Scholar
Jelinek, V. (1967). In Husbandry of Laboratory Animals, p. 97 [Conalty, M. L., editor]. New York and London: Academic Press.Google Scholar
Joubert, C. J. (1967). In Husbandry of Laboratory Animals, p. 133 [Conalty, M. L., editor]. New York and London: Academic Press.Google Scholar
Kerner, E. & Westerfeld, W. W. (1953). Proc. Soc. exp. Biol. Med. 83, 530.CrossRefGoogle Scholar
Koivula, T. & Lindros, K. (1975). Biochem. Pharmac. 24, 1937.CrossRefGoogle Scholar
Lester, D. & Greenberg, L. A. (1952). Q. Jl Stud. Alc. 13, 553.CrossRefGoogle Scholar
Lindros, K., Pekkanen, L. & Koivula, T. (1977). Acta pharmac. tox. 40, 134.CrossRefGoogle Scholar
Lucas, C. C. & Ridout, J. H. (1967). Prog. Chem. Fats, 10, 37, 98.Google Scholar
Marchner, H. & Tottmar, O. (1976). Acta pharmac. tox. 39, 331.CrossRefGoogle Scholar
Mardones, J. (1951). Q. Jl Stud. Alc. 12, 563.CrossRefGoogle Scholar
Mirone, L. (1957). Q. Jl Stud. Alc. 18, 552.CrossRefGoogle Scholar
National Research Council (1972). Nutrient Requirements of Domestic Animals, no. 10, Nutrient Requirements of Laboratory Animals. Washington: National Academy of Sciences.Google Scholar
Oura, E., Konttinen, K. & Suomalainen, H. (1963). Acta physiol. scand. 59, suppl. 213, 119.Google Scholar
Pawan, G. L. S. (1968). Proc. Nutr. Soc. 27, 58 A.Google Scholar
Quarterman, J. (1967). In Husbandry of Laboratory Animals, p. 97 [Conalty, M. L., editor]. New York and London: Academic Press.Google Scholar
Register, U. D., Marsh, S. R., Thurston, C. T., Fields, B. J., Horning, M. C., Hardinge, M. G. & Sanchez, A. (1972). J. Am. diet. Ass. 61, 159.CrossRefGoogle Scholar
Schlesinger, K., Kakihana, R. & Bennet, E. L. (1966). Psychosom. Med. 38, 514.CrossRefGoogle Scholar
Schramm, E., Moore, S. & Bigwood, E. J. (1954). Biochem. J. 57, 33.CrossRefGoogle Scholar
Sheppard, J. R., Albersheim, P. & McClearn, G. (1970). J. biol. Chem. 245, 2876.CrossRefGoogle Scholar
Sihvonen, M.-L. (1972). Annls Acad. Sci.feenn., ser. A. II, 168, 62.Google Scholar
Somogyi, J. C. & Kopp, P. M. (1976). Biblthca ‘Nutr. Dieta’ 24, 17.Google Scholar
Souci, S. W., Fachmann, W. & Kraut, H. (1973). Die Zusammensetzung der Lebensmittel, Nährwerttabellen, I-II. Stuttgart: Wissenschaftliche Verlagsgesellschaft MBH.Google Scholar
Tomasulo, P. A., Kater, R. M. H. & Iber, F. L. (1968). Am. J. Nutr. 21, 1341.CrossRefGoogle Scholar
Tuma, D. J., Barak, A. J. & Sorrell, M. F. (1971). Nutr. Rep. int. 4, 165.Google Scholar
Yliruokanen, I. (1975). Annls Acad. Sci. fenn., ser. A. II, 176, 28.Google Scholar
Young, E. G. (1964). In Nutrition, Vol. 2, p. 299 [Beaton, G. H. and McHenry, E. W., editors]. New York and London: Academic Press.Google Scholar