Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T05:46:38.227Z Has data issue: false hasContentIssue false

Determination of rumen microbial growth in vitro from 32P-labelled phosphate incorporation

Published online by Cambridge University Press:  24 October 2018

C. J. Van Nevel
Affiliation:
Laboratorium voor Voeding en Hygiëne, Rijksuniversiteit Gent, Bosstraat 1, B-9230 Melle, Belgium
D. I. Demeyer
Affiliation:
Laboratorium voor Voeding en Hygiëne, Rijksuniversiteit Gent, Bosstraat 1, B-9230 Melle, Belgium
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

  1. 1. The extracellular phosphate pool in incubations of rumen fluid or washed cell suspensions of mixed rumen bacteria (WCS) was labelled with 32P. From the constant extracellular phosphate pool specific activity and the amount of radioactivity incorporated during incubation, the amount of P incorporated in the microbial fraction was calculated. From the value for nitrogen: P determined in microbial matter, the amount of N incorporated was calculated as a measure of microbial growth.

  2. 2. Incorporation of soluble non-protein-N in incubations devoid of substrate protein was 50 and 80 % of the values obtained using the isotope method for rumen fluid and WCS respectively. It is suggested that results obtained using the former method reflect 'net growth' of micro-organisms which is the result of simultaneous growth and degradation. The isotope method measures 'total growth', as isotope incorporation is not affected by degradation of non-growing cells.

  3. 3. Incorporation of 32P in P-containing microbial components (mainly nucleic acids) was compared with net synthesis of these components in incubations of WCS. The results showed different specific rates of synthesis and degradation for all components studied. It is concluded that the composition of microbial matter changed during growth.

  4. 4. When N incorporation, calculated from results obtained using the isotope method in incubations with rumen fluid, was compared with the amount of carbohydrate substrate fermented and the type of fermentation, values between 18.3 and 44.6 g N incorporated/kg of organic matter fermented were obtained. Low values were associated with large proportions of the substrate being fermented to lactate and the use of glucose instead of disaccharides as substrate. Part of the variation could also be attributed to differences in incubation period, reflected in different proportions of polysaccharide formed.

  5. 5. The use of isotopes for determination of rumen microbial growth in vitro is critically discussed.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1977

References

Adams, J. C., Gazaway, J. A. Jr, Brailsford, M. D., Hartman, P. A. & Jacobson, N. L. (1966). Experientia 22, 717.Google Scholar
Al-Rabbat, M. F., Baldwin, R. L. & Weir, W. C. (1971 a). J. Dairy Sci. 54, 1150.CrossRefGoogle Scholar
Al-Rabbat, M. F., Baldwin, R. L. & Weir, W. C. (19716). J. Dairy Sci. 54, 1162.CrossRefGoogle Scholar
Beever, D. E., Harrison, D. G., Thomson, D. J., Cammell, S. B. & Osbourn, D. F. (1974). Br. J. Nutr. 32, 99.CrossRefGoogle Scholar
Beever, D. E., Thomson, D. J. & Harrison, D. G. (1974). Proc. 12th int. Grassld Congr. p. 69.Google Scholar
Bird, P. R. (1973). Aust. J. biol. Sci. 26, 1429.Google Scholar
Bryant, M. P. (1974). Am. J. din. Nutr. 27, 1313.CrossRefGoogle Scholar
Bucholtz, H. F. & Bergen, W. G. (1973). Appl. Microbiol. 25, 504.CrossRefGoogle Scholar
Coelho da Silva, J. F., Seeley, R. C., Thomson, D. J., Beever, D. E. & Armstrong, D. G. (1972). Br. J. Nutr. 28, 43.CrossRefGoogle Scholar
Coleman, G. S. (1964). J. Gen. Microbiol. 37, 209.Google Scholar
Conway, E.J. (1957). Microdiffusion Analysis and Volumetric Error, 4th ed., p. 98. London: Crosby, Lock wood and Son Ltd.Google Scholar
Davis, A. W. & Hall, W. B. (1970). Aust. J. agric. Res. 21, 753.Google Scholar
Demeyer, D. I. & Henderickx, H. K. (1967). Biochim. biophys. Acta 137, 484.CrossRefGoogle Scholar
Demeyer, D. I. & Van Nevel, C. J. (1974). Pubis Eur. Ass. Anim. Prod. no. 14, p. 87.Google Scholar
Demeyer, D. I. & Van Nevel, C. J. (1975). In Digestion and Metabolism in the Ruminant, p. 366 [I. W. McDonald and A. C. I. Warner, editors]. Armidale, New South Wales: The University of New England Publishing Unit.Google Scholar
Durand, M., Van Nevel, C. J., Dumay, C., Tassencourt, L., Beaumatin, Ph. & Kumaresan, A. (1976). Report of Research Coordinating Meeting on Tracer Studies on Non-protein Nitrogen for Ruminants, Alexandria, Egypt, p. 41. Vienna: International Atomic Energy Agency.Google Scholar
Egan, A. R. (1974). Aust. J. agric. Res. 25, 613.CrossRefGoogle Scholar
Faichney, G. J. (1975). In Digestion and Metabolism in the Ruminant, p. 277 [I. W. McDonald and A. C. I. Warner, editors]. Armidale, New South Wales: The University of New England Publishing Unit.Google Scholar
Gawthorne, J. M. & Nader, C. J. (1976). Br. J. Nutr. 35, 11.CrossRefGoogle Scholar
Hagemeister, H. & Pfeffer, E. (1973). Z. Tierphysiol. Tiererndhr, Futtermittelk. 31, 275.CrossRefGoogle Scholar
Hagemeister, H. & Kaufmann, W. (1974). Kieler Milchwirtsch. Forschungsber. 26, 199.Google Scholar
Harrison, D. G., Beever, D. E., Thomson, D. J. & Osbourn, D. F. (1973). J. agric. Sci., Camb. 81, 391.Google Scholar
Harrison, D. G., Beever, D. E., Thomson, D. J. & Osbourn, D. F. (1975). J. agric. Sci., Camb. 85, 93.Google Scholar
Herbert, D., Phipps, P. J. & Strange, R. E. (1971). Meth. Microbiol. 5B, 209.Google Scholar
Hogan, J. P. & Weston, R. H. (1969). In Physiology of Digestion and Metabolism in the Ruminant, p. 474 [A. T. Phillipson, editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Hogan, J. P. & Weston, R. H. (1971). Aust. J. agric. Res. 11, 951.Google Scholar
Hume, I. D. (1970a). Aust. J. agric. Res. 21, 297.CrossRefGoogle Scholar
Hume, I. D. (1970b). Aust. J. agric. Res. 21, 305.CrossRefGoogle Scholar
Hume, I. D. & Bird, P. R. (1970). Aust. J. agric. Res. 21, 315.Google Scholar
Hume, I. D., Moir, R. J. & Somers, M. (1970). Aust. J. agric. Res. 21, 283.Google Scholar
Hume, I. D. & Purser, D. B. (1975). Aust. J. agric. Res. 26, 199.Google Scholar
Hungate, R. E. (1950). Bad. Rev. 14, 1.Google Scholar
Hungate, R. E. (1969). Meth. Microbiol. 3B, 117.Google Scholar
Hutton, K., Bailey, F. J. & Annison, E. F. (1971). Br. J. Nutr. 25, 165.CrossRefGoogle Scholar
Isaacson, H. R., Hinds, F. C., Bryant, M. P. & Owens, F. N. (1975). J. Dairy Sci. 58, 1645.Google Scholar
Ishaque, M., Thomas, P. C. & Rook, J. A. F. (1971). Nature New Biol. 231, 253.CrossRefGoogle Scholar
Jackson, P., Rook, J. A. F. & Towers, K. G. (1971). J. Dairy Res. 38, 33.Google Scholar
Jarvis, B. D. W. (1968). Appl. Microbiol. 16, 714.CrossRefGoogle Scholar
Kamp, A. J. & Blanchard, F. A. (1971). Analyt. Biochem. 44, 369.Google Scholar
Kanemasa, Y., Akamatsu, Y. & Nojima, S. (1967). Biochim. biophys. Acta 144, 382.Google Scholar
Kepes, A. & Cohen, G. N. (1962). In The Bacteria, vol. 4, p. 179 [I. C. Gunsalus and R. Y. Stanier, editors], London and New York: Academic Press.Google Scholar
Koch, A. L. (1971). J. theor. Biol. 32, 429.Google Scholar
Leibholz, J. (1972). Aust. J. agric. Res. 23, 1073.Google Scholar
Lindsay, J. R. & Hogan, J. P. (1972). Aust. J. agric. Res. 23, 321.CrossRefGoogle Scholar
Ling, J. R. & Buttery, P. J. (1975). Proc. Nutr. Soc. 35, 40A.Google Scholar
McMeniman, N. P., Ben-Ghedalia, D. & Armstrong, D. G. (1976). Pubis Eur. Ass. Anim. Prod. no. 16, p. 217.Google Scholar
MacRae, J. C. (1975). In Digestion and Metabolism in the Ruminant, p. 261 [I. W. McDonald and A. C. I. Warner, editors]. Armidale, New South Wales: The University of New England Publishing Unit.Google Scholar
Maeng, W. J., Van Nevel, C. J., Baldwin, R. L. & Morris, J. G. (1976). J. Dairy Sci. 59, 68.Google Scholar
Marty, R. J. & Demeyer, D. I. (1973). Br. J. Nutr. 30, 369.Google Scholar
Mathison, G. W. & Milligan, L. P. (1971). Br. J. Nutr. 25, 351.Google Scholar
Mitchell, P. & Moyle, J. M. (1953). J. gen. Microbiol. 9, 257.Google Scholar
Naga, N. A. & Harmeyer, J. (1975). J. Anim. Sci. 40, 374.Google Scholar
Nierlich, D. P. (1974). Science, N.Y. 184, 1043.Google Scholar
Nikolic, J. A. & Jovanovic, M. (1973). J. agric. Sci., Camb. 81, 1.Google Scholar
Nikolic, J. A., Jovanovic, M. & Filipovic, R. (1975). Tracer Studies on Non-protein Nitrogen for Ruminants, vol. 2, p. 43. Vienna: International Atomic Energy Agency.Google Scholar
Nolan, J. V., Norton, B. W. & Leng, R. A. (1976). Br. J. Nutr. 35, 127.Google Scholar
Orskov, E. R., Fraser, C. & McDonald, I. (1971). Br. J. Nutr. 25, 243.CrossRefGoogle Scholar
Orskov, E. R., Fraser, C. & McDonald, I. (1972). Br. J. Nutr. 27, 490.CrossRefGoogle Scholar
Parker, R. P. & Elrick, R. M. (1970). In Current Status of Liquid Scintillation Counting, p. 110 [E. R. Bransome, editor]. London: Grune and Stratton.Google Scholar
Paynter, M. J. B., Ewert, D. L. & Chalupa, W. (1969). Appl. Microbiol. 18, 942.Google Scholar
Roberts, S. A. & Miller, E. L. (1969). Proc. Nutr. Soc. 28, 32..Google Scholar
Robinson, J. P. & Hungate, R. E. (1973). Int. J. Syst. Bad. 23, 171.Google Scholar
Smith, R. H. (1969). J. Dairy Res. 36, 313.Google Scholar
Smith, R. H. (1975). In Digestion and Metabolism in the Ruminant, p. 399. [I. W. McDonald and A. C. I. Warner, editors]. Armidale, New South Wales: The University of New England Publishing Unit.Google Scholar
Smith, R. H. & McAllan, A. B. (1974). Br. J. Nutr. 31, 27.Google Scholar
Sutherland, I. W. & Wilkinson, J. F. (1971). Meth. Microbiol. 5B, 345.Google Scholar
Sutton, J. D., Smith, R. H., McAllan, A. B., Storry, J. E. & Corse, D. A. (1975). J. agric. Sci., Camb. 84 317.Google Scholar
Van Nevel, C. J. & Demeyer, D. I. (1973). Proc. 4th A. Mg Eur. Soc. nucl. Meth. Agric, Leuven. Google Scholar
Van Nevel, C. J., Demeyer, D. I. & Maeng, W. J. (1976). Proc. Symp. Nucl. Tech. Anim. Prod. Hlth as Related to the Soil-Plant System, p. 309. Vienna: International Atomic Energy Agency.Google Scholar
Van Nevel, C. J., Henderickx, H. K., Demeyer, D. I. & Martin, J. (1969). Appl. Microbiol. 17, 695.Google Scholar
Walker, D. J., Egan, A. R., Nader, C. J., Ulyatt, M. J. & Storer, G. B. (1975). Aust. J. agric. Res. 26, 699 Google Scholar
Walker, D. J. (1968). Appl Microbiol. 16, 1972.Google Scholar
Walker, D. J. & Nader, C. J. (1968). Appl. Microbiol. 16, 1124.Google Scholar
Walker, D. J. & Nader, C. J. (1970). Aust. J. agric. Res. 21, 747.Google Scholar
Walker, D. J. & Nader, C. J. (1975). Aust. J. agric. Res. 26, 689.Google Scholar
Yagil, E. & Beacham, I. R. (1975). J. Bact. 121, 401.Google Scholar