Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-30T15:50:50.604Z Has data issue: false hasContentIssue false

Determination of nitrogen requirement for microbial growth from the effect of urea supplementation of a low N diet on abomasal N flow and N recycling in wethers and lambs

Published online by Cambridge University Press:  09 March 2007

Sarah A. Allen
Affiliation:
Department of Applied Biology, University of Cambridge, Pembroke Street, Cambridge CB2 3DX
E. L. Miller
Affiliation:
Department of Applied Biology, University of Cambridge, Pembroke Street, Cambridge CB2 3DX
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Plasma urea entry rate, urinary urea excretion and, by difference, urea recycling in the body, together with the flow of non-ammonia N through the abomasum and digestion of dry matter (dm) before the abomasum were determined in both wethers and lambs receiving cereal-starch diets supplemented with urea to give 60–120 g crude protein (N × 6.25)/kg dm.

2. Lambs excreted less urea in urine than wethers given the same diet.

3. Relationships between plasma urea entry rate or urine urea excretion rate and plasma urea concentration were different for lambs compared to wethers suggesting greater conser vation of body N by renal control in lambs.

4. Recycling of urea was not related to plasma urea concentration in wethers but was related exponentially in lambs, suggesting recycling is controlled rather than the result of simple diffusion from the blood to the gastro-intestinal tract.

5. Abomasal non-ammonia-N flow was similar for wethers and lambs and increased linearly with urea supplementation.

6. dm digestion prior to the abomasum was not significantly altered, although there was a tendency for decreased digestion of the basal diet given to lambs.

7. Maximum microbial N flow to the abomasum was estimated as 30 g N/kg organic matter (OM) fermented in the rumen.

8. This work and the literature reviewed suggested maximum net microbial production can be obtained when the diet supplies an amount of fermentable N equal to the microbial N output. It is calculated the diet should supply approximately 26 g fermentable N/kg digestible OM or 1.8 g fermentable N/MJ metabolizable energy. This corresponds to a fermentable crude protein supply varying from 65 to 130 g/kg DM as digestible OM content increases from 400 to 800 g/kg DM.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1976

References

Allen, S. A. & Miller, E. L. (1972). Proc. Nutr. Soc. 31, 26A.Google Scholar
Allison, M. J. (1970). Physiology of Digestion and Metabolism in the Ruminant, p. 456 [Phillipson, A. T. editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Beever, D. E., Harrison, D. G., Thomson, D. J., Cammell, S. B. & Osbourn, D. F. (1974). Br. J. Nutr. 32, 99.CrossRefGoogle Scholar
Bucholtz, H. F. & Bergen, W. G. (1973). Appl. Microbiol. 25, 504.CrossRefGoogle Scholar
Clarke, E. M. W., Ellinger, G. M. & Phillipson, A. T. (1966). Proc. R. Soc. B 166, 63.Google Scholar
Cocimano, M. R. & Leng, R. A. (1967). Br. J. Nutr. 21, 353.CrossRefGoogle Scholar
Decker, P., Hill, H., Gartner, K. & Hornicke, H. (1960). Dt. tierärztle. Wschr. 67, 539.Google Scholar
Duncan, C. W., Agrawala., I. P., Huffman, C. F. & Luecke, R. W. (1953). J. Nutr. 49, 41.CrossRefGoogle Scholar
Egan, A. R. (1974). Aust. J. agric. Res. 25, 613.CrossRefGoogle Scholar
Engelhardt, W. & Nickel, W. (1965). Pflügers Arch. ges. Physiol. 286, 57.CrossRefGoogle Scholar
Fawcett, J. K. & Scott, J. E. (1960).J. clin. Path. 13, 156.CrossRefGoogle Scholar
Gartner, K., Decker, P. & Hill, H. (1961). Pflügers Arch. ges. Physiol. 274, 281.CrossRefGoogle Scholar
Hagemeister, H. & Pfeffer, E. (1973). Z. Tierphysiol. Tierernähr. Futtermittelk. 31, 275.CrossRefGoogle Scholar
Harrison, D. G., Beever, D. E. & Thomson, D. J. (1972). Proc. Nutr. Soc. 31, 60A.Google Scholar
Hecker, J. F. & Nolan, J. V. (1971). Aust. J. biol. Sci. 24, 403.CrossRefGoogle Scholar
Hogan, J. P. (1973). Aust. J. agric. Res. 24, 587.CrossRefGoogle Scholar
Hogan, J. P. & Weston, R. H. (1970). Physiology of Digestion and Metabolism in the Ruminant, p. 474 [Phillipson, A. T. editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Hogan, J. P. & Weston, H. M. (1971). Aust. J. agric. Res. 22, 951.Google Scholar
Houpt, T. R. & Houpt, K. A. (1968). Am. J. Physiol. 214, 1296.CrossRefGoogle Scholar
Hume, I. D. (1970 a). Aust. J. agric. Res. 21, 297.CrossRefGoogle Scholar
Hume, I. D. (1970 b). Aust. J. agric. Res. 21, 305.CrossRefGoogle Scholar
Hume, I. D. (1974). Aust. J. agric. Res. 25, 155.CrossRefGoogle Scholar
Hume, I. D. & Bird, P. R. (1970). Aust. J. agric. Res. 21, 315.CrossRefGoogle Scholar
Hume, I. D., Moir, R. J. & Somers, M. (1970). Aust. J. agric. Res. 21, 283.CrossRefGoogle Scholar
Hume, I. D. & Purser, D. B. (1975). Aust. J. agric. Res. 26, 199.CrossRefGoogle Scholar
Leibholz, J. (1972). Aust. J. agric. Res. 23, 1073.CrossRefGoogle Scholar
Lindsay, J. R. & Hogan, J. P. (1972). Aust. J. agric. Res. 23, 231.CrossRefGoogle Scholar
Loosli, J. K. & McDonald, I. W. (1968). Nonprotein Nitrogen in the Nutrition of Ruminants, FAO Agricultural Studies No. 75. Rome: FAO.Google Scholar
Loosli, J. K., Williams, H. H., Thomas, W. E., Ferris, F. H. & Maynard, L. A. (1949). Science, N. Y. 110, 144.CrossRefGoogle Scholar
Martin, A. K. & Blaxter, K. L. (1965). Publs. Eur. Ass. Anim. Prod. no. 11, p. 83.Google Scholar
Mathison, G. W. & Milligan, L. P. (1971). Br. J. Nutr. 25, 351.CrossRefGoogle Scholar
McIntyre, K. H. (1971). Aust. J. agric. Res. 22, 429.CrossRefGoogle Scholar
Mercer, J. R. & Annison, E. F. (1976). In First International Symposium on Protein Metabolism and Nutrition, University of Nottingham. p. 397 [D., J. A., Cole, K. N., Boorman, P. J., Buttery, D., Lewis, R. J., Neale, & H. Swan, editors] London: Butterworth & Co. Ltd.Google Scholar
Miller, E. L. (1973). Proc. Nutr. Soc. 32, 79.CrossRefGoogle Scholar
Nolan, J. V. & Leng, R. A. (1972). Br. J. Nutr. 27, 177.CrossRefGoogle Scholar
Nolan, J. V., Norton, B. W. & Leng, R. A. (1973). Proc. Nutr. Soc. 32, 93.CrossRefGoogle Scholar
Ørskov, E. R., Fraser, C. & McDonald, I. (1971). Br. J. Nutr. 25, 243.CrossRefGoogle Scholar
Ørskov, E. R., Fraser, C. & McDonald, I. (1972). Br. J. Nutr. 27, 491.CrossRefGoogle Scholar
Owen, J. B., Davies, D. A. R., Miller, E. L. & Ridgman, W. J. (1967). Anim. Prod. 9, 509.Google Scholar
Owens, F. N., Knight, W. M. & Nimrick, K. O. (1973). J. Anim. Sci. 37, 1000.CrossRefGoogle Scholar
Phillipson, A. T. (1964). In Mammalian Protein Metabolism, Vol. 1, p. 71 [Munro, H. N. & Allison, J. B., editors]. London: Academic Press.CrossRefGoogle Scholar
Pilgrim, A. F., Gray, F. V., Weller, R. A. & Belling, C. B. (1970). Br. J. Nutr. 24, 589.CrossRefGoogle Scholar
Portugal, A. V. & Sutherland, T. M. (1966). Nature, Lond. 209, 510.CrossRefGoogle Scholar
Roberts, S. A. & Miller, E. L. (1969). Proc. Nutr. Soc. 28, 32A.Google Scholar
Satter, L. D. & Slyter, L. L. (1974). Br. J. Nutr. 32, 199.CrossRefGoogle Scholar
Sharma, H. R., van't Klooster, A. Th. & Frens, A. M. (1969). Z. Tierphysiol. Tierernähr. Futtermittelk. 24, 373.CrossRefGoogle Scholar
Smith, R. H. (1969). J. Dairy Res. 36, 313.CrossRefGoogle Scholar
Várady, J., Boda, K., Havassy, I. & Bajo, M. (1969). Physiologia bohemoslov. 18, 23.Google Scholar
Varley, J. A. (1966). Analyst, Lond. 91, 119.CrossRefGoogle Scholar
Virtanen, A. I. (1966). Science, N. Y. 153, 1603.CrossRefGoogle Scholar
Walker, D. J. & Nader, C. J. (1970). Aust. J. agric. Res. 21, 747.CrossRefGoogle Scholar
Weller, R. A. & Pilgrim, A. F. (1974). Br. J. Nutr. 32, 341.CrossRefGoogle Scholar