Hostname: page-component-669899f699-cf6xr Total loading time: 0 Render date: 2025-04-27T10:06:37.363Z Has data issue: false hasContentIssue false

Determinants of the consumption of ultra-processed foods in the Brazilian population

Published online by Cambridge University Press:  28 October 2024

V. N. C. Silveira*
Affiliation:
Postgraduate program in Public Health, Federal University of Maranhão, São Luís, Brazil
A. M. dos Santos
Affiliation:
Postgraduate program in Public Health, Federal University of Maranhão, São Luís, Brazil
A. K. T. C. França
Affiliation:
Postgraduate program in Public Health, Federal University of Maranhão, São Luís, Brazil Physiological Sciences Department, Federal University of Maranhão, São Luís, Brazil
*
*Corresponding author: V. N. C. Silveira, email [email protected]

Abstract

This article aims to evaluate the sociodemographic determinants of ultra-processed foods (UPF) consumption in the Brazilian population ≥ 10 years of age. The study used data from the personal and resident food consumption module of the Family Budget Surveys, grouping foods according to the NOVA classification of food processing. The classification and regression tree (CART) was used to identify the factors determining the lowest to highest percentage participation of UPF in the Brazilian population. UPF accounted for 37·0 % of energy content in 2017–2018. In the end, eight nodes of UPF consumption were identified, with household situation, education in years, age in years and per capita family income being the determining factors identified in the CART. The lowest consumption of UPF occurred among individuals living in rural areas with less than 4 years of education (23·78 %), while the highest consumption occurred among individuals living in urban areas, < 30 years of age and with per capita income ≥ US$257 (46·27 %). The determining factors identified in CART expose the diverse pattern of UPF consumption in the Brazilian population, especially conditions directly associated with access to these products, such as penetration in urban/rural regions. Through the results of this study, it may be possible to identify focal points for action in policies and actions to mitigate UPF consumption.

Type
Research Article
Copyright
© The Author(s), 2024. Published by Cambridge University Press on behalf of The Nutrition Society

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Article purchase

Temporarily unavailable

References

dos Santos Costa, C, de Faria, FR, Gabe, KT, et al. (2021) Escore Nova de consumo de alimentos ultraprocessados: descrição e avaliação de desempenho no Brasil. Rev Saude Publica 55, 13.CrossRefGoogle Scholar
da Costa Louzada, ML, Baraldi, LG, Steele, EM, et al. (2015) Consumption of ultra-processed foods and obesity in Brazilian adolescents and adults. Prev Med (Baltim) 81, 915.CrossRefGoogle Scholar
Monteiro, CA, Cannon, G, Levy, R, et al. (2016) Classificação dos alimentos. Saúde Pública. NOVA. A estrela brilha. World Nutr 7, 2840.Google Scholar
Ferreira, RC, Barbosa, LB & Vasconcelos, SML (2019) Estudos de avaliação do consumo alimentar segundo método dos escores: uma revisão sistemática. Cien Saude Colet 24, 17771792.CrossRefGoogle Scholar
da Costa Louzada, ML, dos Santos Costa, C, Souza, TN, et al. (2021) Impacto do consumo de alimentos ultraprocessados na saúde de crianças, adolescentes e adultos: revisão de escopo. Cad Saude Publica 37, e00323020.CrossRefGoogle Scholar
Neri, D, Steele, EM, Khandpur, N, et al. (2022) Ultraprocessed food consumption and dietary nutrient profiles associated with obesity: a multicountry study of children and adolescents. Obesity Reviews 23, e13387.CrossRefGoogle ScholarPubMed
Srour, B, Fezeu, LK, Kesse-Guyot, E, et al. (2020) Ultraprocessed food consumption and risk of type 2 diabetes among participants of the NutriNet-Santé prospective cohort. JAMA Intern Med 180, 283291.CrossRefGoogle ScholarPubMed
Chen, X, Zhang, Z, Yang, H, et al. (2020) Consumption of ultra-processed foods and health outcomes: a systematic review of epidemiological studies. Nutr J 19, 110.CrossRefGoogle ScholarPubMed
wIBGE (2020) Pesquisa De Orçamentos Familiares : 2017–2018 : Análise Do Consumo Alimentar Pessoal No Brasil. Rio de Janeiro, RJ: Instituto Brasileiro de Geografi a e Estatística – IBGE.Google Scholar
Brasil (2023) Vigitel Brasil 2023: Vigilância de Fatores de Risco e Proteção Para Doenças Crônicas Por Inquérito Telefônico: Estimativas Sobre Frequência E Distribuição Sociodemográfica de Fatores de Risco E Proteção Para Doenças Crônicas Nas Capitais dos 26 Estados Brasileiros e No Distrito Federal Em 2023. Brasília: Ministério da Saúde.Google Scholar
da Costa Louzada, ML, da Cruz, GL, Silva, KAAN, et al. (2023) Consumo de alimentos ultraprocessados no Brasil: distribuição e evolução temporal 2008–2018. Rev Saude Publica 57, 12.CrossRefGoogle Scholar
Steinfeldt, L, Anand, J & Murayi, T (2013) Food reporting patterns in the USDA automated multiple-pass method. Procedia Food Sci 2, 145156.CrossRefGoogle Scholar
Andridge, RR & Little, RJA (2010) A review of hot deck imputation for survey non-response. Int Stat Rev 78, 4064.CrossRefGoogle ScholarPubMed
Universidade de São Paulo (USP) (2023) Tabela Brasileira de Composição de Alimentos (TBCA). Food Research Center (FoRC). São Paulo: Universidade de São Paulo.Google Scholar
Carrizosa, E, Molero-Río, C & Romero Morales, D (2021) Mathematical optimization in classification and regression trees. Top 29, 533.CrossRefGoogle ScholarPubMed
Breiman, L, Friedman, J, Olshen, R, et al. (1984) Classification and Regression Trees. New York: Chapman and Hall/CRC.Google Scholar
R Core Team (2023) R: A Language and Environment for Statistical Computing. Vienna, Austria: R Foundation for Statistical Computing.Google Scholar
Therneau, T & Atkinson, B (2022) rpart: Recursive Partitioning and Regression Trees. https://cran.r-project.org/package=rpart (accessed January 2024).Google Scholar
Lumley, T (2023) Survey: analysis of complex survey samples. J Stat Softw 9, 119.Google Scholar
Daniel, DS, Whiting, K, Curry, M, et al. (2021) Reproducible summary tables with the gtsummary package. R J 13, 570.Google Scholar
Baraldi, LG, Steele, EM, Canella, DS, et al. (2018) Consumption of ultra-processed foods and associated sociodemographic factors in the USA between 2007 and 2012: evidence from a nationally representative cross-sectional study. BMJ Open 8, e020574.CrossRefGoogle ScholarPubMed
Muhammad, A, D’Souza, A, Meade, B, et al. (2017) How income and food prices influence global dietary intakes by age and sex: evidence from 164 countries. BMJ Glob Health 2, e000184.CrossRefGoogle ScholarPubMed
Imamura, F, Micha, R, Khatibzadeh, S, et al. (2015) Dietary quality among men and women in 187 countries in 1990 and 2010: a systematic assessment. Lancet Glob Health 3, e132e142.CrossRefGoogle ScholarPubMed
Khandpur, N, Cediel, G, Obando, DA, et al. (2020) Sociodemographic factors associated with the consumption of ultra-processed foods in Colombia. Rev Saude Publica 54, 19.CrossRefGoogle ScholarPubMed
Juul, F, Lin, Y, Deierlein, AL, et al. (2021) Trends in food consumption by degree of processing and diet quality over 17 years: results from the Framingham offspring study. Br J Nutr 126, 18611871.CrossRefGoogle ScholarPubMed
Mariath, AB, Machado, AD, Ferreira, LNM, et al. (2022) The possible role of increased consumption of ultra-processed food products in the development of frailty: a threat for healthy ageing? Br J Nutr 128, 461466.CrossRefGoogle ScholarPubMed
Pagliai, G, Dinu, M, Madarena, MP, et al. (2021) Consumption of ultra-processed foods and health status: a systematic review and meta-analysis. Br J Nutr 125, 308318.CrossRefGoogle ScholarPubMed
Moubarac, J-C, Claro, RM, Baraldi, LG, et al. (2013) International differences in cost and consumption of ready-to-consume food and drink products: United Kingdom and Brazil, 2008–2009. Glob Public Health 8, 845856.CrossRefGoogle Scholar
Popkin, BM, Adair, LS & Ng, SW (2012) Global nutrition transition and the pandemic of obesity in developing countries. Nutr Rev 70, 321.CrossRefGoogle ScholarPubMed
Claro, RM, Maia, EG, Costa, BVL, et al. (2016) Preço dos alimentos no Brasil: prefira preparações culinárias a alimentos ultraprocessados. Cad Saude Publica 32, e00104715.CrossRefGoogle Scholar
Shim, J-S, Shim, S-Y, Cha, H-J, et al. (2021) Socioeconomic characteristics and trends in the consumption of ultra-processed foods in Korea from 2010 to 2018. Nutrients 13, 1120.CrossRefGoogle ScholarPubMed