Hostname: page-component-cd9895bd7-lnqnp Total loading time: 0 Render date: 2024-12-23T17:55:39.389Z Has data issue: false hasContentIssue false

Determinants of plasma cholesterol responsiveness to diet

Published online by Cambridge University Press:  09 March 2007

Margaret M. Cobb
Affiliation:
Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, 1230 York Avenue, New York, New York 100214399, USA
Howard Teitlebaum
Affiliation:
Laboratory of Biochemical Genetics and Metabolism, The Rockefeller University, 1230 York Avenue, New York, New York 100214399, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Plasma cholesterol change, or ‘responsiveness’, to dietary saturated fat modification has long been acknowledged. The present study sought to determine the specific, predicted response of each cholesterol subfraction to known dietary manipulations. Two metabolically controlled diets, one with a low polyunsaturated:saturated fat (low P:S) ratio, and one with a high P:S ratio were fed in a crossover design to sixty-seven normolipidaemic subjects pooled from six foregoing metabolic studies. A series of statistical analyses was performed to identify the lipids and subfractions independently affected by the diet crossover. Multivariate analysis of variance revealed that the changes in total cholesterol (ΔTC), low-density-lipoprotein-cholesterol (ΔLDL-C), and high-density-lipoprotein-cholestero! (ΔHDL-C) were the only statistically significant diet-specific‘responsive’lipids. Multiple regression was performed to identify the independent predictors of ΔTC, ΔLDL-C and ΔHDL-C. It was found that age (years), extent of change in dietary saturated fat, and baseline LDL-C (mg/l) levels determine LDL-C change, while extent of change in saturated and polyunsaturated fat, and baseline HDL-C (mg/l) levels can predict HDL-C change. A series of equations to predict lipoprotein responsiveness to diet are derived for potential use in clinical practice.

Type
Diet and Coronary Heart Disease
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Ahrens, E. H. Jr, Hirsch, J. & Insull, W. Jr (1957). The influence of dietary fats on serum-lipid levels in man. Lancet i, 943963.CrossRefGoogle Scholar
Albers, J. J., Wahl, P. W., Cabana, V. G., Hazzard, W. R. & Hoover, J. J. (1976). Quantitation of apolipoprotein A1 of human plasma high density lipoprotein. Metabolism 25, 633644.CrossRefGoogle ScholarPubMed
Bonanome, A. & Grundy, S. M. (1988). Effect of dietary stearic acid on plasma cholesterol and lipoprotein levels. New England Journal of Medicine 48, 12441248.CrossRefGoogle Scholar
Brinton, E. A., Eisenberg, S. & Breslow, J. L. (1990). A low-fat diet decreases high density lipoprotein (HDL) cholesterol levels by decreasing HDL apolipoprotein transport rates. Journal of Clinical investigation 85, 144151.CrossRefGoogle ScholarPubMed
Castelli, W. P., Garrison, R. J. & Wilson, P. W. F. (1986). Incidence of coronary heart disease and lipoprotein levels: The Framingham Study. Journal of the American Medical Association 256, 28352838.CrossRefGoogle ScholarPubMed
Cobb, T. (1992). Effects of dietary stearic acid on plasma cholesterol levels. Southern Medical Journal 85, 2528.CrossRefGoogle ScholarPubMed
Denke, M. A. & Breslow, J. L. (1988). Effects of a low fat diet with and without intermittent saturated fat and cholesterol ingestion on plasma lipid, lipoprotein, and apolipoprotein levels in normal volunteers. Journal of Lipid Research 29, 963969.CrossRefGoogle ScholarPubMed
Dreon, D. M., Vranizan, K. M., Krauss, R. M., Austin, M. A. & Wood, P. (1990). The effects of polyunsaturated fat on plasma lipoproteins. Journal of the American Medical Association 23, 24632466.Google Scholar
Ehnholm, C., Huttunen, J. K. & Pietinen, P. (1984). Effect of a diet low in saturated fatty acids on plasma lipids, lipoproteins and HDL subfractions. Arteriosclerosis 4, 265269.CrossRefGoogle ScholarPubMed
Fisher, E. A., Blum, C. B., Zannis, V. L. & Breslow, J. L. (1983). Independent effects of dietary saturated pdt and cholesterol on plasma lipids, lipoproteins, and Apolipoprotein E. Journal of Lipid Research 24, 10391048.CrossRefGoogle Scholar
Grande, F. & Anderson, J. T. (1964). Prediction of serum cholesterol changes caused dietary fat in man. Minnesota Medicine 47, 645650.Google ScholarPubMed
Grundy, S. M. (1989). Comparison of monounsaturated fatty acids and carbohydrates for lowering plasma cholesterol. New England Journal of Medicine, 314, 745748.Google Scholar
Grundy, S. M. & Denke, M. A. (1990). Dietary influences on serum lipids and lipoproteins. Journal of Lipid Research 31, 11491172.CrossRefGoogle ScholarPubMed
Grundy, S. M., Nix, D., Whelan, M. F. & Franklin, L. (1986). Comparison of three cholesterol-lowering diets in normolipidemic men. Journal of the American Medical Association 256, 23512355.CrossRefGoogle ScholarPubMed
Grundy, S. M. & Vega, G. L. (1988). Plasma cholesterol responsiveness to saturated Fatty aids. American Journal of Clinical Nutrition 47, 822824.CrossRefGoogle Scholar
Grundy, S. M., Vega, G. L. & Bilheimer, D. W. (1985). Kinetic mechanisms determining variability in low density lipoprotein levels and rise with age. Arteriosclerosis 5, 623630.CrossRefGoogle ScholarPubMed
Hegsted, D. M., McGandy, R. B., Myers, M. L. & Stare, F. J. (1965). Quantitative effects of dietary fat on serum cholesterol in man. American Journal of Clinical Nutrition 17, 281295.CrossRefGoogle ScholarPubMed
Jacobs, D. R. Jr, Anderson, J. T. & Hannan, P. (1983). Variability in individual serum cholesterol response to change in diet. Arferiosderosis 3, 349356.Google Scholar
Kay, R. M., Jacobs, M., Katan, M. B., Miller, N. E. & Lewis, B. (1984). Relationship between changes in plasma lipoprotein concentrations and faecal steroid excretion during consumption of four experimental diets. Atherosclerosis 55, 1523.Google Scholar
Keys, A., Anderson, J. T. & Grande, F. (1957). Prediction of serum cholesterol responses of man to changes in fats in the diet. Lancet ii, 959966.Google Scholar
Keys, A., Anderson, J. T. & Grande, F. (1959). Serum cholesterol in man: diet fat and intrinsic responsiveness. Circulation 19, 201214.Google Scholar
Keys, A., Anderson, J. T. & Grande, F. (1965 a) Serum cholesterol response to changes in the diet. Iodine value of dietary fat versus 2s-P. Metabolism 14, 747758.CrossRefGoogle Scholar
Keys, A.,Anderson, J. T. & Grande, F. (1965 b). Serum cholesterol response to changes in the diet. IV. Particular saturated fatty acids in the diet. Metabolism 14, 776787.Google Scholar
Keys, A. K. (1984). Serum cholesterol response to dietary cholesterol. American Journal of Clinical Nutrition 40, 351359.CrossRefGoogle ScholarPubMed
Keys, A. & Parlin, R. W. (1965). Serum cholesterol response to changes in dietary lipids. American Journul of Clinical Nutrition 17, 175181.Google Scholar
Lerner, D. J. & Kanner, W. B. (1986). Patterns of coronary heart disease morbidity and mortality in the sexes: a 26-year follow-up of the Framingham population. American Heart Journal 111, 383390.CrossRefGoogle ScholarPubMed
Martin, M. J., Hulley, S. B., Browner, W. S., Kuller, L. H. & Wentwort, D. (1986). Serum cholesterol, blood pressure and mortality: implications from a cohort of 361,662 men. Lancet ii, 93339936.Google Scholar
National Center for Health Statistics (1981). The Second National Health and Nutrition Examination survey,. Vital and Health Statistics Series 1, no. 15. DHHS Publication no. (PHS) 811317. Washington, DC: Government Printing Ofice.Google Scholar
National Cholesterol Education Program Expert Panel (1988). Report of the National Cholesterol Education Program Expert Panel on detection. evaluation and treatment of high blood cholesterol in adults. Archioes of Internal Medicine 148, 3669.CrossRefGoogle Scholar
Nutrition Committee, American Heart Association (1988). Dietary guidelines for healthy American adults. A statement for physicians and health professionals by the Nutrition Committee, American Heart Association. Circulation 77, 721A724A.Google Scholar
Rifkind, B. M. (editors) (1989). In The Lipid Research Clinics Popularions Studies Data Book. vol. 1, The Prevalance Study. NIH Publication no. 80–1527, pp. 7073. Bethesda: NIH.Google Scholar
Sacks, F. M., Handysides, G. H. J., Mariais, G. E., Rosner, B. & Kass., E. H. (1986). Effects of a low-fat diet on plasma lipoprotein levels. Archives of Internal Medicine 146, 15731577.CrossRefGoogle ScholarPubMed
Spady, D. K. & Dietschy, J. M. (1985). Dietary saturated triacylglycerols suppress hepatic low density lipoprotein receptor activity in the hamster. Proceedings of the National Acudetny of Sciences, USA 82, 45264530.CrossRefGoogle ScholarPubMed
Warnick, G. R., Benderson, J. & Albers, J. J. (1982). Dextran sulfate-Mg2+ precipitation procedure or quantitation of high-density-lipoprotein cholesterol. Clinical Chemistry 28, 13791388.Google Scholar
Weintraub, M. S., Zechner, R., Brown, A,, Eisenberg, S. & Breslow, J. L. (1988). Dietary polyunsaturated fats of the ω-6 and ω-3 series reduce postprandial lipoprotein levels. Chronic and acute effects of fat saturation on postprandial lipoprotein metabolism. Journal of Clinical Investigation 82, 18841893.Google Scholar
Wissel, P. S., Denke, M. A. & Inturrisi, C. A. (1987). A comparison of the effects of a macrobiotic diet and a Western diet on drug metabolism and plasma lipids in man. European Journal of Cliniccil Pharmacology 33, 403407.Google Scholar
Zanni, E. E., Zannis, V. I., Blum, C. B., Herbert, P. N. & Breslow, J. L. (1987). Effect of egg cholesterol and dietary fats on plasma lipids, lipoproteins, and apoproteins of normal women consuming natural diets. Journal of Lipid Research 28, 518527.CrossRefGoogle ScholarPubMed