Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2024-12-23T19:55:42.207Z Has data issue: false hasContentIssue false

Depletion of Δ9 desaturase (EC 1.14.99.5) enzyme activity in growing rat during dietary protein restriction

Published online by Cambridge University Press:  09 March 2007

Michel Narce
Affiliation:
Unité de Recherches en Nutrition Cellulaire et Métabolique, Faculté des Sciences Mirande, BP 138, 21004 Dijon Cédex, France
Jean-Pierre Poisson
Affiliation:
Unité de Recherches en Nutrition Cellulaire et Métabolique, Faculté des Sciences Mirande, BP 138, 21004 Dijon Cédex, France
Jacques Belleville
Affiliation:
Unité de Recherches en Nutrition Cellulaire et Métabolique, Faculté des Sciences Mirande, BP 138, 21004 Dijon Cédex, France
Bernard Chanussot
Affiliation:
Unité de Recherches en Nutrition Cellulaire et Métabolique, Faculté des Sciences Mirande, BP 138, 21004 Dijon Cédex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of protein restriction on Δ9 desaturase (EC 1.14.99.5) activity were studied in growing rats. A control group was fed on a balanced diet (200 g casein/kg; BD) for 28 d. The experimental group was fed on the low-protein diet (20 g casein/kg; LP) for 26 d, then refed the balanced diet (BD-R) for 2 d. Rats were born to and suckled from normally fed dams. The enzyme activity was measured after 2 and 14 d of LP, and 26 d of LP plus 2 d of BD-R, by incubations in vitro of hepatic microsomal pellets with [1-14C]stearic acid. The results indicated a decreased Δ9 desaturase activity after 2 and 14 d of LP of -33 and -43% respectively. Refeeding for 2 d was sufficient to super-repair this activity (+ 66%). The fatty acid composition of total liver lipids and microsomal phosphatidylethanolamines (PE) and phosphatidylcholines (PC) were also investigated; 18:0 decreased in total liver lipids at 14 d of LP, when 18:1n-9 increased. Stearic acid (18:0) increased in PC at 2 d of LP and in PE at 14 d of LP; oleic acid (18:1n-9) did not change. Therefore, it is concluded that a defect occurred in the bioconversion of 18:0 into 18:1n-9 by Δ9 desaturation during protein depletion. As oleic acid is accumulated in total liver lipids during LP, we speculate that this is due to a decreased oxidation or transport of this fatty acid

Type
Lipid Metabolism
Copyright
Copyright © The Nutrition Society 1992

References

Actis Dato, S. M., Catala, A. & Brenner, R. R. (1973). Circadian rhythm of fatty acid desaturation in mouse liver. Lipids 8, 16.CrossRefGoogle ScholarPubMed
Anthony, L. E. & Edozien, J. C. (1975). Experimental protein and energy deficiencies in the rat. Journal of Nutrition 105, 631648.CrossRefGoogle ScholarPubMed
Bartlett, G. R. (1959). Phosphorus assay in column chromatography. Journal of Biological Chemistry 234, 466468.CrossRefGoogle ScholarPubMed
Brenner, R. R. (1981). Nutritional and hormonal factors influencing desaturation of essential fatty acids. Progress in Lipids Research 20, 4147.CrossRefGoogle ScholarPubMed
Brenner, R. R. & Peluffo, R. O. (1974). Influence of dietary protein on Δ6 and Δ9 desaturation of fatty acids in rats of different ages and in different seasons. Journal of Nutrition 104, 894901.Google Scholar
Brown, K. J., Suskind, R. M. & Lubin, B. (1978). Changes in red cell membrane in protein-energy malnutrition. American Journal of Clinical Nutrition 31, 574578.CrossRefGoogle Scholar
Coward, W. A. & Lunn, P. G. (1981). The biochemistry and physiology of kwashiorkor and marasmus. British Medical Bulletin 37, 1924.CrossRefGoogle ScholarPubMed
De Tomas, M. E., Mercuri, O. & Rodrigo, A. (1980). Effects of dietary protein and EFA deficiency on liver Δ5, Δ6 and Δ9 desaturase activities in the early developing rat. Journal of Nutrition 110, 595599.CrossRefGoogle Scholar
De Tomas, M. E., Mercuri, O. & Serres, C. (1983). Effects of cross-fostering rats at birth on the normal supply of Essential Fatty Acids during protein deficiency. Journal of Nutrition 113, 314319.CrossRefGoogle ScholarPubMed
Delsal, J. L. (1944). A new method for serum lipids extraction by methylal. Bulletin de la Société de Chimie Biologique 29, 99105.Google Scholar
Fernandez Ortega, M. (1989). Effect of dietary lysin level and protein restriction on the lipids and carnitine levels in the liver of pregnant rats. Annals of Nutrition and Metabolism 33, 162169.CrossRefGoogle Scholar
Flores, H., Sierralta, W. & Monckeberg, F. (1970). Triglyceride transport in protein depleted rats. Journal of Nutrition 100, 375379.CrossRefGoogle ScholarPubMed
Fondu, P., Mozes, N. & Neve, P. (1980). The erythrocyte membrane disturbances in protein-energy malnutrition: nature and mechanisms. British Journal of Haematology 44, 605613.CrossRefGoogle ScholarPubMed
Gerson, T. & Wong, H. N. (1978). The effect of protein deficiency on some rat liver metabolic enzymes and coenzyme A. Lipids 13, 446450.CrossRefGoogle Scholar
Holman, R. T., Johnson, S. B., Mercuri, O., Itarte, H. J., Rodrigo, M. A. & De Tomas, M. E. (1981). Essential fatty acid deficiency in malnourished children. American Journal of Clinical Nutrition 34, 15341539.CrossRefGoogle ScholarPubMed
Inkpen, C. A., Harris, R. A. & Quackenbush, W. F. (1969). Differential responses to fasting and subsequent feeding by microsomal systems of rat liver: Δ6 and Δ9 desaturation of fatty acids. Journal of Lipid Research 10, 277282.CrossRefGoogle Scholar
Layne, E. (1957). Spectrophotometric and turbidimetric methods for measuring proteins. In Methods in Enzymology, pp. 447454 [Colowick, S. P. and Kaplan, N. O., editors]. New York: Academic Press.Google Scholar
Leat, W. M. F. (1983). Nutritional deficiencies and fatty acid metabolism. Proceedings of the Nutrition Society 42, 333343.CrossRefGoogle ScholarPubMed
Medwadowski, B. & Lyman, R. L. (1973). Brain and liver phospholipids in young rats fed a low-protein (8% casein) diet from birth to 7 weeks of age. Nutrition Reports International 8, 273282.Google Scholar
Meghelli-Bouchenak, M., Belleville, J. & Boquillon, M. (1989 a). Hepatic steatosis and serum very low-density lipoproteins during two types of protein malnutrition followed by balanced refeeding. Nutrition 5, 321329.Google ScholarPubMed
Meghelli-Bouchenak, M., Boquillon, M. & Belleville, J. (1987). Time-course of changes in rat serum apolipoproteins during the consumption of different low-protein diets followed by a balanced diet. Journal of Nutrition 117, 641649.CrossRefGoogle ScholarPubMed
Meghelli-Bouchenak, M., Boquillon, M. & Belleville, J. (1989 b). Serum lipoprotein composition and amounts during the consumption of two different low-protein diets followed by a balanced diet. Nutrition Reports International 39, 323343.Google Scholar
Mercuri, O., De Tomas, M. E. & Itarte, H. (1979). Prenatal protein depletion and Δ9, Δ6 and Δ5 desaturases in the rat. Lipids 14, 822825.CrossRefGoogle ScholarPubMed
Naismith, D. L. (1973). Kwashiorkor in western Nigeria: a study of traditional weaning foods, with particular reference to energy and linoleic acid. British Journal of Nutrition 30, 567576.CrossRefGoogle ScholarPubMed
Narce, M., Gresti, J. & Bezard, J. (1988 a). Method for evaluating the bioconversion of radioactive polyunsaturated fatty acids by use of reverse-phase liquid chromatography. Journal of Chromatography 448, 249264.CrossRefGoogle Scholar
Narce, M., Poisson, J. P., Belleville, J. & Chanussot, B. (1988 b). Time-course effects of protein malnutrition on hepatic fatty acid Δ6 and Δ5 desaturation in the growing rat. British Journal of Nutrition 60, 389402.CrossRefGoogle Scholar
Narce, M., Poisson, J. P., Belleville, J. & Divry-Aellen, M. T. (1986 a). Chronologic study of a low-protein diet followed by a balanced diet, on Δ6 and Δ5 desaturation of linoleic acid in rat microsomes. Archives Internationales de Physiologie et de Biochimie 94, 107120.CrossRefGoogle Scholar
Narce, M., Poisson, J. P., Belleville, J., Divry-Aellen, M. T. & Chanussot, B. (1986 b). Chronologic study of Δ6 and Δ5 desaturations of linoleic acid in rat liver microsomes, during a low-protein diet followed by a balanced diet. In Les Malnutritions dans les Pays du Tiers-Monde, pp. 229236 [Lemonnier, D. and Ingenbleek, Y., editors]. Paris: INSERM.Google Scholar
Oshino, N. & Sato, R. (1972). The dietary control of the microsomal stearyl CoA desaturation enzyme system in rat liver. Archives of Biochemistry and Biophysics 149, 369377.CrossRefGoogle ScholarPubMed
Ramanadham, M. & Kaplay, S. S. (1982). Erythrocyte osmotic fragility in protein-energy malnutrition: cholesterol, phospholipid and Ca++, Mg++ adenosine triphosphatase. Biochemical Medicine 27, 226231.CrossRefGoogle Scholar
Rogers, C. G. (1971). Lipid composition and metabolism in liver mitochondria and microsomes of rats fed a low-protein diet. Journal of Nutrition 101, 15471554.CrossRefGoogle ScholarPubMed
Rogers, C. G. (1972). Fatty acids of phosphatidylcholine and phosphatidylethanolamine in liver mitochondria and microsomes of rats fed a low-protein diet. Nutrition Reports International 5, 381390.Google Scholar
Seakins, A. & Waterlow, J. C. (1972). Effects of a low-protein diet on the incorporation of amino acids into rat serum lipoproteins. Biochemical Journal 129, 793795.CrossRefGoogle ScholarPubMed
Slover, H. T. & Lanza, E. (1979). Quantitative analysis of food fatty acids by capillary gas chromatography. Journal of the American Oil Chemists Society 56, 933943.CrossRefGoogle Scholar
Taylor, G. O. (1971). Serum triglycerides and fatty acids in kwashiorkor. American Journal of Clinical Nutrition 24, 12121215.CrossRefGoogle ScholarPubMed
Truswell, A. J., Hansen, J. D., Watson, C. E. & Wannenburg, P. (1969). Relation of serum lipids and lipoproteins to fatty acid liver in kwashiorkor. American Journal of Clinical Nutrition 22, 568576.CrossRefGoogle Scholar
Vajreswari, A., Narayanareddy, K. & Srinivasa Rao, P. (1990). Fatty acid composition of erythrocyte membrane lipid obtained from children suffering from kwashiorkor and marasmus. Metabolism 39, 779782.CrossRefGoogle ScholarPubMed
Wagner, H., Hörhammer, L. & Wolff, P. (1961). Thin-layer chromatography of phospholipids and glycolipids. Biochemie Zeitung 334, 175184.Google ScholarPubMed
Waterlow, J. C., Cravioto, J. & Stephen, J. M. L. (1960). Protein malnutrition in Man. In Advances in Protein Chemistry, Vol 15, pp. 131237 [Anfinsen, C. B., Anson, M. L., Bailey, K. and Edsall, J. I., editors]. New York: Academic Press.Google Scholar
Williams, J. N. & Hurlebaus, A. J. (1965 a). Response of the liver to prolonged protein depletio Neutral n. V. glycerides and cholesterol production of fatty livers by certain amino-acids fed a protein-free ration. Journal of Nutrition 85, 7381.CrossRefGoogle Scholar
Williams, J. N. & Hurlebaus, A. J. (1965 b). Response of the liver to prolonged protein depletion. VI. Total phospholipids and plasmalogens, and protection of phospholipids by methionine and cysteine. Journal of Nutrition 85, 8288.CrossRefGoogle Scholar
Williams, J. N. & Hurlebaus, A. J. (1966). Fatty acid changes in liver produced by protein deficiency and by methionine or cysteine fed to rats in a protein-free ration. Journal of Nutrition 89, 477486.CrossRefGoogle ScholarPubMed
Yagasaki, K. & Kametaka, M. (1978). Effects of dietary fats and fatty acids on liver lipid accumulation in rats fed low-protein diets. Journal of Nutritional Science and Vitaminology 24, 149156.CrossRefGoogle ScholarPubMed