Hostname: page-component-586b7cd67f-vdxz6 Total loading time: 0 Render date: 2024-11-29T08:35:20.508Z Has data issue: false hasContentIssue false

The demonstration of protein-bound 99Mo-di- and trithiomolybdate in sheep plasma after the infusion of 99Mo-labelled molybdate into the rumen

Published online by Cambridge University Press:  09 March 2007

J. Mason
Affiliation:
Biochemistry Department, Trinity College, University of Dublin, Dublin 2, Ireland
C. A. Kelleher
Affiliation:
Biochemistry Department, Trinity College, University of Dublin, Dublin 2, Ireland
Jane Letters
Affiliation:
Biochemistry Department, Trinity College, University of Dublin, Dublin 2, Ireland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Protein-bound, trichloroacetic acid- (TCA) insoluble 99Mo appeared in plasma a few hours after the introduction of 99Mo-labelled molybdate (30 mg Mo) into the rumen of sheep maintained on a basic diet supplemented with elemental sulphur (3 g S/d).

2. Most of the 99Mo could be displaced from its protein carrier in vitro and the labelled compounds displaced were identified by Sephadex G-25 chromatography as di- and trithiomolybdate. Tetrathiomolybdate was not detected.

3. In control experiments protein-bound, TCA-insoluble 99Mo predominated in plasma after the direct administration of [99Mo]tetrathiomolybdate, either into the rumen or intravenously. The 99 Mo could be displaced in vitro and [99Mo]tetrathiomolybdate identified, although [99Mo]trithiomolybdate was also present.The study provides direct evidence of thiomolybdate synthesis and absorption in ruminants in vivo.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1982

References

REFERENCES

Bray, A. C., Suttle, N. F. & Field, A. C. (1982). Proc. Nutr. Soc. 41, 67A.CrossRefGoogle Scholar
Clarke, N. J. & Laurie, S. H. (1979). J. Inorg. Biochem. 12, 37.CrossRefGoogle Scholar
Clarke, N. J. & Laurie, S. H. (1982). Inorg. Chem. Acta 66, L35.CrossRefGoogle Scholar
Dick, A. T., Dewey, D. W. & Gawthorne, J. M. (1975). J. agric. Sci., Camb. 85, 567.CrossRefGoogle Scholar
Fell, B. F., Dinsdale, D. W. & El-Gallad, T. T. (1979). J. comp. Path. 89, 495.CrossRefGoogle Scholar
Harmer, M. A. & Sykes, G. (1980). Inorg. Chem. 19, 2881.CrossRefGoogle Scholar
Kelleher, C. A., Ivan, M., Lamand, M. & Mason, J. (1982). J. comp. Path. (In the Press.)Google Scholar
Mason, J. (1981). Irish vet. J. 35, 221.Google Scholar
Mason, J., Lamand, M. & Kelleher, C. A. (1980). Br. J. Nutr. 43, 515.CrossRefGoogle Scholar
Mason, J., Lamand, M. & Kelleher, C. A. (1982). J. comp. Path. (In the Press.)Google Scholar
Mason, J., Lamand, M., Tressol, J. C. & Lab, C. (1978). Ann. Rech. Vet. 9, 577.Google Scholar
Mills, C. F., Bremner, I., El-Gallad, T. T., Dalgarno, A. C. & Young, B. W. (1978). In Trace Element Metabolism in Man and Animals, p. 150 [Kirchgessner, M., editor]. Weinhenstephan: Arbeitskreis für Tierernahrungsforschung.Google Scholar
Mills, C. F., El-Gallad, T. T. & Bremner, I. (1981). J. Inorg. Biochem. 14, 189.CrossRefGoogle Scholar
Suttle, N. F. (1974). Proc. Nutr. Soc. 33, 299.CrossRefGoogle Scholar
Suttle, N. F. (1980). Ann. N.Y. Acad. Sci. 355, 195.CrossRefGoogle Scholar
Weber, K. M., Leaver, D. D. & Wedd, A. G. (1979). Br. J. Nutr. 41, 403.CrossRefGoogle Scholar