Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T01:49:08.992Z Has data issue: false hasContentIssue false

Degradation of riboflavin by alimentary bacteria of the ruminant and man: production of 7,8-dimethyl-10-carboxymethylisoalloxazine

Published online by Cambridge University Press:  24 July 2007

D. W. West
Affiliation:
Biochemistry Department, Hannah Research Institute, Ayr KA6 5HL
E. C. Oiven
Affiliation:
Biochemistry Department, Hannah Research Institute, Ayr KA6 5HL
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A new product of the bacterial degradation of riboflavin has been isolated from fermentations in vitro of mixtures of either rumen bacteria or caecal bacteria with excess of the vitamin.

2. This product has been identified as 7,8-dimethyl-10-carboxymethylisoalloxazine and has also been shown to occur in the urine of ruminants and man.

3. The bacterial formation of this compound is compared with the bacterial formation of other isoalloxazines previously identified in similar incubation mixtures, and is discussed in relation to the factors influencing the mode of degradation of riboflavin.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1973

References

REFERENCES

von Ardenne, M., Steinfelder, K. & Tümmler, R. (1965). Z. Chemie, Lpz. 5, 287.Google Scholar
Cresswell, R. M. & Wood, H. C. S. (1960). J. chem. Soc. p. 4768.Google Scholar
Crossland, A., Owen, E. C. & Proudfoot, R. (1958). Br. J. Nutr. 12, 312.CrossRefGoogle Scholar
Fall, H. H. & Petering, H. G. (1956). J. Am. chem. Soc. 78, 377.Google Scholar
Föry, W., MacKenzie, R. E. & McCormick, D. B. (1968). J. heterocyclic Chem. 5, 625.CrossRefGoogle Scholar
Foster, J. W. (1944). J. Bact. 47, 27.CrossRefGoogle Scholar
Fukamachi, C. & Sakurai, Y. (1955). J. Vitam. 1, 217.Google Scholar
Hemmerich, P., Veegar, C. S. & Wood, H. C. S. (1965). Chemie 4, 619.Google Scholar
McCormick, D. B., Arsensis, C. & Hemmerich, P. (1963). J. biol. Chem. 238, 3095.Google Scholar
McDougall, E. I. (1948). Biochem. J. 43, 99.CrossRefGoogle Scholar
Miles, H. T. & Stadtman, E. R. (1955). J. Am. chem. Soc. 77, 5746.Google Scholar
Owen, E. C. (1962). Proc. int. Congr. Fd Sci. I. London Vol. 3, p. 669.Google Scholar
Owen, E. C. & West, D. W. (1968). Chemy Ind. p. 881.Google Scholar
Owen, E. C. & West, D. W. (1970). Br. J. Nutr. 24, 45.Google Scholar
Tümmler, R., Steinfelder, K., Owen, E. C. & West, D. W. (1971). Org. Mass Spec. 5, 41.Google Scholar
West, D. W. & Owen, E. C. (1969). Br. J. Nutr. 23, 889.Google Scholar
West, D. W., Owen, E. C. & Taylor, M. M. (1967). Proc. Nutr. Soc. 26, xvii.Google Scholar
Wood, W. A. (1961). In The Bacteria Vol. 2, p. 71 [Gunsalus, I.G. and Stanier, R.V., editors]. London: Academic Press.Google Scholar
Wu, F. Y.-H., MacKenzie, R. E. & McCormick, D. B. (1970). Biochemistry, Easton 9, 2219.Google Scholar
Yanagita, T. & Foster, J. W. (1956). J. biol. Chem. 221, 593.Google Scholar