Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2025-01-05T13:55:15.520Z Has data issue: false hasContentIssue false

The degradation of guar gum by a faecal incubation system

Published online by Cambridge University Press:  09 March 2007

J. Tomlin
Affiliation:
Clinical Research Unit Royal Hallamshire Hospital, Shefield S10 2JF
N. W. Read
Affiliation:
Clinical Research Unit Royal Hallamshire Hospital, Shefield S10 2JF
C. A. Edwards
Affiliation:
Clinical Research Unit Royal Hallamshire Hospital, Shefield S10 2JF
B. I. Duerden
Affiliation:
Department of Medical Microbiology, Royal Hallamshire Hospital, Shefield S10 2JF
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Homogenized and diluted faeces (50 g/l) from one human source were incubated with the complex plant polysaccharide, guar gum, to investigate the degradation of viscous polysaccharides by intestinal bacteria.

2. Incubation of the faecal homogenate with guar gum produced a rapid decrease in viscosity and in pH, accompanied by the release of hydrogen.

3. No changes in viscosity or pH were observed and there was no production of H2 gas when guar gum was incubated with autoclaved faecal homogenate (20 min, 1.03 × 105 Pa).

4. A bacteria-free filtrate of faeces was prepared by centrifuging the faecal homogenate (2400 g for 100 min) followed by filtration through a Seitz filter and then a millipore filter (size 0.45 μm). Incubating this with guar gum produced a slow decrease in viscosity, but no significant change in pH and no generation of H2.

5. Our results show that guar gum can be fermented by human colonic bacteria and suggest the possibility of predigestion by extracellular free enzymes.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Balascio, J. R., Palmer, J. K. & Salyers, A. A. (1981). Journal of Food Biochemistry 5, 271282.CrossRefGoogle Scholar
Blackburn, N. A. & Johnson, I. T. (1981). British Journal of Nutrition 46, 239246.CrossRefGoogle Scholar
Blackburn, N. A., Redfern, J. S., Jarjis, H., Holgate, A. M., Hanning, I., Scarpello, J. H. B., Johnson, I. T. & Read, N. W. (1984). Clinical Science 66, 329336.CrossRefGoogle Scholar
Bowes, A. P. & Church, C. F. (editors) (1975). In Food Values of Portions Commonly Used, p. 166, 12th ed. New York: J. B. Lippincott Co.Google Scholar
Bown, R. L., Gibson, J. A, Sladen, G. E., Hicks, B. & Dawson, A. M. (1974). Guf 15, 9991004.Google Scholar
Croucher, S. C., Houston, A. P., Bayliss, C. A. & Turner, R. J. (1983). Applied and Environmental Microbiology 45, 10251033.Google Scholar
Cummings, J. H., Branch, W. J., Jenkins, D. J., Southgate, D. A, Houston, H. & James, W. P. (1978). Lancet i, 58.CrossRefGoogle Scholar
Emi, S., Fukumoto, J. & Yamamoto, T. (1972). Agricultural and Biological Chemisfry 36, 9911001.Google Scholar
Ganz, A. J. (1974). Food Engineering 46, 6769.Google Scholar
Gherhardini, F. & Salyers, A. A. (1982). Abstracts of the Annual Meeting of the American Society of Microbiology p. 147, K64.Google Scholar
Goldstein, A. M., Alter, E. N. & Seaman, J. K. (1973). In Industrial Gums, pp. 303321, 2nd ed. [Whistler, R. L. and BeMiller, J. N., editors ]. New York: Academic Press.CrossRefGoogle Scholar
Holt, S., Heading, R. C., Carter, D. C., Prescott, L. F. & Tothill, P. (1979). Lancet i, 636639.CrossRefGoogle Scholar
Hoskins, L. C. & Boulding, E. T. (1981). Journal of Clinical Investigation 67, 163172.CrossRefGoogle Scholar
Jenkins, D. J. A., Reynolds, D., Slavin, B., Leeds, A. R., Jenkins, A. L. & Jepson, E. M. (1980). American Journal of Clinical Nutrition 33, 575581.CrossRefGoogle Scholar
Jenkins, D. J. A., Wolever, T. M. S., Hockaday, T. D. R., Leeds, A. R., Howarth, R., Bacon, S., Apling, E. C. & Dilawari, J. B. (1977). Lancet ii, 779780.CrossRefGoogle Scholar
Johnson, I. T. & Gee, J. M. (1980). Proceedings of the Nutrition Society 39, 52A.Google Scholar
Krotkiewski, M. (1984). British Journal of Nutrition 52, 97105.CrossRefGoogle Scholar
Leeds, A. R., Ralphs, D. N. L., Ebied, F., Metz, G. & Dilawari, J. B. (1981). Lancet i, 10751078.CrossRefGoogle Scholar
Macdonald, I. A., Singh, G., Mahony, D. E. & Meier, C. E. (1978). Steroids 32, 245256.Google Scholar
Mark, H. (1945). In Physical Methods of Organic Chemistry, vol. 1, pp. 135147 (Weissburger, A., editor). New York: Interscience.Google Scholar
Moore, W. E. C., Cato, E. P. & Holdeman, L. V. (1978). American Journal of Clinical Nutrition 31, S33S42.Google Scholar
Morgan, L. M., Goulder, T. J., Tsiolakis, D., Marks, V. & Alberti, K. G. (1979). Diabetologia 17, 8589.CrossRefGoogle Scholar
Prizont, R., Konigsberg, N. & Aminoff, D. (1976). Gastroenterology 70, A70/928.Google Scholar
Royal College of Physicians of London (1980). Medical Aspects of Dietary Fibre, 1st ed., pp. 1225. Tonbridge, Kent: Pitman Medical Ltd.Google Scholar
Salyers, A. A, Palmer, J. K. & Wilkins, T. D. (1978). American Journal of Clinical Nutrition 31, S128S130.Google Scholar
Salyers, A. A., Vercellotti, J. R., West, S. E. H. & Wilkins, T. D. (1977 a). Applied and Environmental Microbiology 33, 319322.CrossRefGoogle Scholar
Salyers, A. A., West, S. E. H., Vercellotti, J. R. & Wilkins, T. D. (1977 b). Applied and Environmental Microbiology34, 529533.Google Scholar
Stephen, A. M. & Cummings, J. H. (1980). Journal of Medical Microbiology 13, 4556CrossRefGoogle Scholar