Hostname: page-component-78c5997874-8bhkd Total loading time: 0 Render date: 2024-11-19T05:44:52.077Z Has data issue: false hasContentIssue false

Copper, manganese, zinc, nickel, cadmium and lead in human foetal tissues

Published online by Cambridge University Press:  26 April 2012

Clare E. Casey
Affiliation:
Department of Nutrition, University of Otago, Dunedin, New Zealand
Marion F. Robinson
Affiliation:
Department of Nutrition, University of Otago, Dunedin, New Zealand
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Concentrations of copper, manganese, zinc, nickel, cadmium and lead were measured in samples of liver, kidney, brain, heart, lung, skeletal muscle and vertebral bone from forty foetuses of 22–43 weeks gestation.

2. Cu concentrations in the liver were up to 100 times those in other tissues, but only those in the brain showed a significant increase with gestational age.

3. Mn concentrations were similar in all tissues; the over-all range was 0.35–9.27 μg/g dry matter (dm).

4. Concentrations of Zn in the liver were much higher than in other tissues and decreased with gestational age, whereas levels in skeletal muscle increased.

5. In all tissues Ni concentrations were within the range 0.04–2.8 μg/g dm and levels in kidney and muscle decreased significantly with age.

6. Cd was detected in most of the tissue samples and concentrations were within the range 0.01–0.58μg/g dm.

7. Concentrations of Pb, where it was detected, varied from 0.1 to 2.4 μg/g dm in the soft tissues and from 0.4 to 4.3 μg/g dm in the bone samples.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1978

References

REFERENCES

Al-Rashid, R. A. & Spangler, J. (1971). New Engl. J. Med. 285, 841.CrossRefGoogle Scholar
Anon (1975). N.Z. Agriculturalist 21, 6.Google Scholar
Ashkenazi, A., Levin, S., Djaldetti, M., Fishel, E. & Benvenisti, D. (1973). Pediatrics, Springfield 52, 525.CrossRefGoogle Scholar
Barltrop, D. (1969). In Mineral Metabolism in Paediatrics, p. 135 [Barltrop, D. and Burland, W. L., editors]. Oxford: Blackwell.Google Scholar
Barry, P. S. I. (1975). Br. J. indust. Med. 32, 119.Google Scholar
Bernstein, D. M., Kneip, T. J., Kleinman, M. T., Riddick, R. & Eisenbud, M. (1974). In Trace Substances in Environmental Health, Vol. 8, p. 329 [Hemphill, D. D., editor]. Columbia: University of Missouri.Google Scholar
Brückmann, G. & Zondek, S. G. (1939). Biochem. J. 33, 1845.CrossRefGoogle Scholar
Burch, R. E., Hahn, H. K. J. & Sullivan, J. F. (1975). Clin. Chem. 21, 501.CrossRefGoogle Scholar
Casey, C. E. (1976). The accumulation of some trace elements in the New Zealand infant during the perinatal period. PhD Thesis; University of Otago.Google Scholar
Chaube, S., Nishimura, H. & Swinyard, C. A. (1973). Arch. Environ. Hlth 26, 237.CrossRefGoogle Scholar
Chernoff, N. (1973). Teratol. 8, 29.CrossRefGoogle Scholar
Cordano, A., Baertl, J. M. & Graham, G. G. (1964). Pediatrics, Springfield 34, 324.CrossRefGoogle Scholar
DiPaulo, R. V. & Newberne, P. M. (1972). Fedn Proc. Fed. Am. Socs. exp. Biol. 31, 699.Google Scholar
Ferm, V. H. (1972). Adv. Teratol. 5, 51.Google Scholar
Friberg, L., Kjellström, T., Nordberg, G. F. & Piscator, M. (1975). Cadmium in the Environment, Vol. 3, Technol. Ser. EPA-650/2-75-049. Washington DC: US Environmental Protection Agency.Google Scholar
Friberg, L., Piscator, M. & Nordberg, G. (1971). Cadmium in the Environment. Cleveland: CRC Press.Google Scholar
Friberg, L., Piscator, M., Nordberg, G. F. & Kjellström, T. (1974). Cadmium in the Environment, 2nd ed. Cleveland: CRC Press.Google Scholar
Gooddy, W., Hamilton, E. I. & Williams, T. R. (1975). Brain 98, 65.CrossRefGoogle ScholarPubMed
Grace, N. D. (1973). N.Z. Jl agric. Res. 16, 177.CrossRefGoogle Scholar
Hambidge, K. M. (1974). Proc. Nutr. Soc. 33, 249.CrossRefGoogle Scholar
Hammer, D. I., Calocci, A. V., Hasselbad, V., Williams, M. E. & Pinkerton, C. (1973). J. occup. Med. 15, 956.Google Scholar
Henke, G., Sachs, H. W. & Bohn, G. (1970). Archs Toxicol. 26, 8.Google Scholar
Horiuchi, K., Horiguchi, S. & Suekane, M. (1959). Osaka City Med. J. 5, 41.Google Scholar
Hurley, L. S. (1976). In Trace Elements in Human Health and Disease, Vol. 2, p. 301 [Prasad, A. S., editor]. New York: Academic Press.Google Scholar
Hurley, L. S. & Shrader, R. E. (1972). In Neurobiology of the Trace Metals Zinc and Copper, p. 7 [Pfeiffer, C. C., editor]. New York: Academic Press.Google Scholar
Janes, J. M., McCall, J. T. & Elveback, L. R. (1972). Proc. Staff. Meet. Mayo Clin. 47, 476.Google Scholar
Johnson, C. A. (1976). Analyt. chim. Acta 81, 69.CrossRefGoogle Scholar
Kanabrocki, E. L. (1973). In Trace Elements in Relation to Cardiovascular Diseases, p. 57. Vienna: International Atomic Energy Agency Tech. Rep. No. 157.Google Scholar
Livingstone, H. D. (1972). Clin.Chem. 18, 67.CrossRefGoogle Scholar
McBean, L. D., Dove, J. T., Halstead, J. A. & Smith, J. C. (1972). Am. J. clin. Nutr. 25, 672.CrossRefGoogle Scholar
McKenzie, J. M. (1974). N.Z. med. J. 79, 1016.Google Scholar
Mikosha, A. (1959). Nauk Zap. Stanis. Med. Instit. 3, 85. Cited: Chem. Abstr. (1963). 59, 7969.Google Scholar
New, Zealand Soil Bureau (1962). New Zealand Soil Bureau Atlas Maps. Wellington: Government Printer.Google Scholar
Nielsen, F. H. (1971). In Newer Trace Elements in Nutrition, p. 215 [Mertz, W. and Cornatzer, W. E., editors]. New York: Marcel Dekker.Google Scholar
Nielsen, F. H. (1974). In Trace Element Metabolism in Animals, Vol. 2, p. 381 [Hoekstra, W. G., Suttie, J. W., Ganther, H. E. and Mertz, W., editors]. Baltimore: University Park Press.Google Scholar
Nielsen, F. H. & Higgs, D. J. (1970). In Trace Substances in Environmental Health, Vol. 4, p. 241 [Hemphill, D. D., editor]. Columbia: University of Missouri.Google Scholar
Nomoto, S. & Sunderman, F. W. (1970). Clin. Chem. 16, 477.CrossRefGoogle Scholar
Nordberg, G. F. (1972). Environ. Physiol. Biochem. 2, 7.Google Scholar
Parr, R. M. & Taylor, D. M. (1964). Biochem. J. 91, 424.CrossRefGoogle Scholar
Patterson, C. C. (1965). Archs environ. Hlth 11, 344.CrossRefGoogle Scholar
Plantin, L.-O. (1973). In Trace Elements in Relation to Cardiovascular Diseases, p. 91. Vienna: International Atomic Energy Agency Tech. Rep. No. 157.Google Scholar
Priev, I. G. (1964). Vop. med. Khim. 10, 352.Google Scholar
Romhanyil, I., Fazekas, I. Gy. & Rengei, B. (1962). Zacchia 25, 295. Cited: Chem. Abstr. (1963), 59, 7945.Google Scholar
Sandstead, H. H. (1973). Am. J. clin. Nutr. 26, 1251.CrossRefGoogle Scholar
Scanlon, J. (1972). Clin. Pediat. 11, 135.CrossRefGoogle Scholar
Shellshear, I. D., Jordan, L. D., Hogan, D. J. & Shannon, F. T. (1975). N.Z. med. J. 81, 382.Google Scholar
Smeyers-Verbeke, J., Defrise-Gussenhoven, E., Ebinger, G., Löwenthal, A. & Massart, D. L. (1974). Clinica Chim. Acta 51, 309.CrossRefGoogle Scholar
Syversen, T. L. M. (1975). Arch. environ. Hlth 30, 158.CrossRefGoogle Scholar
Tipton, I. H. & Cook, M. J. (1963). Hlth. Phys. 9, 89.CrossRefGoogle Scholar
Towers, N. R. (1977). Proc. Nutr. Soc. N.Z. 2 (Part 3), 21.Google Scholar
Underwood, E. J. (1971). Trace Elements in Human and Animal Nutrition, 3rd ed. London: Academic Press.Google Scholar
Völkl, A., Berlet, H. & Ule, G. (1974). Neuropäd. 5, 236.CrossRefGoogle Scholar
Walravens, P. & Hambidge, K. M. (1976). Am. J. clin. Nutr. 29, 1114.CrossRefGoogle Scholar
Widdowson, E. M., Chan, H., Harrison, G. E. & Milner, R. D. G. (1972). Biol. Neonate 20, 360.CrossRefGoogle Scholar