Crossref Citations
This article has been cited by the following publications. This list is generated based on data provided by
Crossref.
Váradyová, Z.
Kišidayová, S.
Siroka, P.
and
Jalč, D.
2007.
Fatty acid profiles of rumen fluid from sheep fed diets supplemented with various oils and effect on the rumen ciliate population.
Czech Journal of Animal Science,
Vol. 52,
Issue. 11,
p.
399.
Yáñez-Ruiz, David R.
Williams, Selwyn
and
J. Newbold, Charles
2007.
The effect of absence of protozoa on rumen biohydrogenation and the fatty acid composition of lamb muscle.
British Journal of Nutrition,
Vol. 97,
Issue. 5,
p.
938.
Jenkins, T. C.
Wallace, R. J.
Moate, P. J.
and
Mosley, E. E.
2008.
BOARD-INVITED REVIEW: Recent advances in biohydrogenation of unsaturated fatty acids within the rumen microbial ecosystem1.
Journal of Animal Science,
Vol. 86,
Issue. 2,
p.
397.
Or-Rashid, Mamun M.
AlZahal, Ousama
and
McBride, Brian W.
2008.
Studies on the production of conjugated linoleic acid from linoleic and vaccenic acids by mixed rumen protozoa.
Applied Microbiology and Biotechnology,
Vol. 81,
Issue. 3,
p.
533.
Váradyová, Zora
Kišidayová, Svetlana
Siroka, Peter
and
Jalč, Dušan
2008.
Comparison of fatty acid composition of bacterial and protozoal fractions in rumen fluid of sheep fed diet supplemented with sunflower, rapeseed and linseed oils.
Animal Feed Science and Technology,
Vol. 144,
Issue. 1-2,
p.
44.
Schmidely, P.
Glasser, F.
Doreau, M.
and
Sauvant, D.
2008.
Digestion of fatty acids in ruminants: a meta-analysis of flows and variation factors. 1. Total fatty acids.
Animal,
Vol. 2,
Issue. 5,
p.
677.
Huws, Sharon A.
Kim, Eun J.
Kingston-Smith, Alison H.
Lee, Michael R.F.
Muetzel, Stefan M.
Cookson, Alan R.
Newbold, Charles J.
Wallace, R. John
and
Scollan, Nigel D.
2009.
Rumen protozoa are rich in polyunsaturated fatty acids due to the ingestion of chloroplasts.
FEMS Microbiology Ecology,
Vol. 69,
Issue. 3,
p.
461.
Sylvester, J.T.
Karnati, S.K.R.
Dehority, B.A.
Morrison, M.
Smith, G.L.
St-Pierre, N.R.
and
Firkins, J.L.
2009.
Rumen ciliated protozoa decrease generation time and adjust 18S ribosomal DNA copies to adapt to decreased transfer interval, starvation, and monensin.
Journal of Dairy Science,
Vol. 92,
Issue. 1,
p.
256.
Karnati, S.K.R.
Sylvester, J.T.
Ribeiro, C.V.D.M.
Gilligan, L.E.
and
Firkins, J.L.
2009.
Investigating unsaturated fat, monensin, or bromoethanesulfonate in continuous cultures retaining ruminal protozoa. I. Fermentation, biohydrogenation, and microbial protein synthesis.
Journal of Dairy Science,
Vol. 92,
Issue. 8,
p.
3849.
Cantalapiedra-Hijar, G.
Yáñez-Ruiz, D. R.
Martín-García, A. I.
and
Molina-Alcaide, E.
2009.
Effects of forage:concentrate ratio and forage type on apparent digestibility, ruminal fermentation, and microbial growth in goats1.
Journal of Animal Science,
Vol. 87,
Issue. 2,
p.
622.
Žnidaršič, Tomaž
Verbič, Jože
Babnik, Drago
and
Velikonja-Bolta, Špela
2010.
The effect of supplementing highly wilted grass silage with maize silage, fodder beet or molasses on degradation of the diets and the efficiency of microbial protein synthesis in the rumen of sheep.
Italian Journal of Animal Science,
Vol. 9,
Issue. 4,
p.
e86.
Vasta, Valentina
Yáñez-Ruiz, David R.
Mele, Marcello
Serra, Andrea
Luciano, Giuseppe
Lanza, Massimiliano
Biondi, Luisa
and
Priolo, Alessandro
2010.
Bacterial and Protozoal Communities and Fatty Acid Profile in the Rumen of Sheep Fed a Diet Containing Added Tannins.
Applied and Environmental Microbiology,
Vol. 76,
Issue. 8,
p.
2549.
Belanche, A.
Erroa, I. R.
Balcells, J.
and
Calleja, L.
2010.
Use of quantitative real-time PCR to assess thein vitrosurvival of specific DNA gene sequences of rumen microbes under simulated abomasal conditions.
Journal of Animal Physiology and Animal Nutrition,
Vol. 94,
Issue. 2,
p.
204.
Lourenço, M.
Ramos-Morales, E.
and
Wallace, R.J.
2010.
The role of microbes in rumen lipolysis and biohydrogenation and their manipulation.
Animal,
Vol. 4,
Issue. 7,
p.
1008.
Aldai, Noelia
Dugan, Michael E.R.
Kramer, John K.G.
Robertson, Wayne M.
Juárez, Manuel
and
Aalhus, Jennifer L.
2010.
Trans-18:1 and conjugated linoleic acid profiles after the inclusion of buffer, sodium sesquicarbonate, in the concentrate of finishing steers.
Meat Science,
Vol. 84,
Issue. 4,
p.
735.
Molina-Alcaide, E.
Morales-García, E.Y.
Martín-García, A.I.
Ben Salem, H.
Nefzaoui, A.
and
Sanz-Sampelayo, M.R.
2010.
Effects of partial replacement of concentrate with feed blocks on nutrient utilization, microbial N flow, and milk yield and composition in goats.
Journal of Dairy Science,
Vol. 93,
Issue. 5,
p.
2076.
Firkins, Jeffrey Lynn
2010.
Reconsidering rumen microbial consortia to enhance feed efficiency and reduce environmental impact of ruminant livestock production systems.
Revista Brasileira de Zootecnia,
Vol. 39,
Issue. suppl spe,
p.
445.
Laho, T.
Váradyová, Z.
Mihaliková, K.
Kišidayová, S.
Adamechová, Z.
Čertík, M.
and
Jalč, D.
2011.
Prefermented cereals containing fungal gamma-linolenic acid and their effect on rumen metabolism in vitro.
Czech Journal of Animal Science,
Vol. 56,
Issue. 7,
p.
325.
Belanche, A.
Abecia, L.
Holtrop, G.
Guada, J. A.
Castrillo, C.
de la Fuente, G.
and
Balcells, J.
2011.
Study of the effect of presence or absence of protozoa on rumen fermentation and microbial protein contribution to the chyme1.
Journal of Animal Science,
Vol. 89,
Issue. 12,
p.
4163.
Belanche, A.
de la Fuente, G.
Yáñez-Ruiz, D. R.
Newbold, C. J.
Calleja, L.
and
Balcells, J.
2011.
Technical note: The persistence of microbial-specific DNA sequences through gastric digestion in lambs and their potential use as microbial markers1.
Journal of Animal Science,
Vol. 89,
Issue. 9,
p.
2812.