Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-08T09:52:00.182Z Has data issue: false hasContentIssue false

Contribution of liver, skin and skeletal muscle to whole-body protein synthesis in the young lamb

Published online by Cambridge University Press:  09 March 2007

D. Attaix
Affiliation:
INRA et CNRS U.A. 1123, Centre de Recherches Zootechniques et Vétérinaires de Theix, 63122 Ceyrat, France
E. Aurousseau
Affiliation:
INRA et CNRS U.A. 1123, Centre de Recherches Zootechniques et Vétérinaires de Theix, 63122 Ceyrat, France
A. Manghebati
Affiliation:
INRA et CNRS U.A. 1123, Centre de Recherches Zootechniques et Vétérinaires de Theix, 63122 Ceyrat, France
M. Arnal
Affiliation:
INRA et CNRS U.A. 1123, Centre de Recherches Zootechniques et Vétérinaires de Theix, 63122 Ceyrat, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Protein fractional synthesis rate (FSR) was measured in some major tissues and in the whole body of six 1-week-old sucking lambs by a large injection of L-[3H]valine.

2. Upper estimates of tissue protein FSR (%/d), assuming that the tissue-homogenate free-valine specific radioactivity defined that of valyl tRNA, were 115.0 in liver, 24.1 in skin, 22.9 in the white M. tensor fasciae latae, 21.6 in the red M. diaphragma and 19–6 in the remainder (exsanguinated whole body without liver and gastrointestinal tract) of lambs.

3. Absolute synthesis rates (ASR) of tissue protein were 17, 19 and 42 g/d in the liver, skin and skeletal muscle respectively, and 112 g/d in the remainder. The ASR of whole-body protein, derived from the tissue values, was 146 g/d, i.e. 33 g/d per kg body-weight. The calculated whole-body protein FSR was 23.9 %/d.

4. The relative percentage contribution of liver, skin and skeletal muscle to whole-body protein synthesis was 11.7, 13.1, and 29.0.

5. We concluded that tissue protein FSR in lambs were in exactly the same decreasing order, from visceral tissues to skeletal muscles, as observed in rats. The ovine FSR estimates and the partitioning of protein synthesis between tissues were in the same range as values recently obtained by flooding-dose experiments in immature rats, piglets, and even in chicks. These findings suggest that inter-species differences are rather limited.

Type
General Nutrition Papers
Copyright
Copyright © The Nutrition Society 1988

References

Arnal, M. (1977). European Association for Animal Production 22, 3537.Google Scholar
Attaix, D. & Arnal, M. (1987). British Journal of Nutrition 58, 159169.CrossRefGoogle Scholar
Attaix, D., Manghebati, A. & Arnal, M. (1986 a). Reproduction, Nutrition, Développement 26, 703704.CrossRefGoogle Scholar
Attaix, D., Manghebati, A., Grizard, J. & Arnal, M. (1986 b). Biochimica et Biophysica Acta 882, 389397.CrossRefGoogle Scholar
Bénévent, M. (1971). Annales de Biologie Animale, Biochimie, Biophysique 11, 539.CrossRefGoogle Scholar
Bryant, D. T. W. & Smith, R. W. (1982). Journal of Agricultural Science, Cambridge 98, 639643.CrossRefGoogle Scholar
Buttery, P. J., Beckerton, A. & Lubock, M. H. (1977). European Association for Animal Production 22, 3234.Google Scholar
Combe, E., Attaix, D. & Arnal, M. (1979). Annales de Recherches Vétérinaires 10, 436439.Google Scholar
Davis, S. R., Barry, T. N. & Hughson, G. A. (1981). British Journal of Nutrition 46, 409419.CrossRefGoogle Scholar
Edmunds, B. K., Buttery, P. J. & Fisher, C. (1978). Proceedings of the Nutrition Society 37, 32A.Google Scholar
Garlick, P. J. (1980). In Comprehensive Biochemistry, Vol. 19B, part 1, pp. 77152 [Florkin, M. and Stotz, E.H., editors]. Amsterdam: Elsevier.Google Scholar
Garlick, P. J., Burk, T. L. & Swick, R. W. (1976). American Journal of Physiology 230, 11081112.CrossRefGoogle Scholar
Garlick, P. J., McNurlan, M. A. & Preedy, V. R. (1980). Biochemical Journal 192, 719723.CrossRefGoogle Scholar
Goldspink, D. F. & Kelly, F. J. (1984). Biochemical Journal 217, 507516.CrossRefGoogle Scholar
Goldspink, D. F., Lewis, S. E. M. & Kelly, F. J. (1984). Biochemical Journal 217, 527534.CrossRefGoogle Scholar
Hammond, A. C., Huntington, G. B., Reynolds, P. J., Tyrrell, H. F. & Eisemann, J. H. (1987). Journal of Animal Science 64, 420425.CrossRefGoogle Scholar
Lewis, S. E. M., Kelly, F. J. & Goldspink, D. F. (1984). Biochemical Journal 217, 517526.CrossRefGoogle Scholar
Lobley, G. E., Connell, A. & Buchan, V. (1987). British Journal of Nutrition 57, 457465.CrossRefGoogle Scholar
Lobley, G. E., Milne, V., Lovie, J. M., Reeds, P. J. & Pennie, K. (1980). British Journal of Nutrition 43, 491502.CrossRefGoogle Scholar
Lobley, G. E., Webster, A. J. F. & Reeds, P. J. (1978). Proceedings of the Nutrition Society 37, 20A.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, P. J. (1951). Journal of Biological Chemistry 193, 265275.CrossRefGoogle Scholar
McNurlan, M. A. & Garlick, P. J. (1980). Biochemical Journal 186, 381383.CrossRefGoogle Scholar
Millward, D. J., Brown, J. G. & Odedra, B. (1981). In Nitrogen Metabolism in Man, pp. 475494 [Waterlow, J.C. and Stephen, J. M. L., editors]. London: Applied Sciences Publishers.Google Scholar
Mulvaney, D. R., Merkel, R. A. & Bergen, W. G. (1985). Journal of Nutrition 115, 10571064.CrossRefGoogle Scholar
Munro, H. N. & Fleck, A. (1969). In Mammalian Protein Metabolism, Vol. 3, pp. 423525 [Munro, H. N., editor]. New York: Academic Press.CrossRefGoogle Scholar
Muramatsu, T., Tasaku, O., Furuse, M., Tasaki, I. & Okumura, J. I. (1987). Biochemical Journal 246, 475479.CrossRefGoogle Scholar
Patureau-Mirand, P., Bernard, O., Prugnaud, J. & Arnal, M. (1985). Reproduction, Nutrition, Développement 25, 10611073.CrossRefGoogle Scholar
Preedy, V. R., McNurlan, M. A. & Garlick, P. J. (1983). British Journal of Nutrition 49, 517523.CrossRefGoogle Scholar
Reeds, P. J., Cadenhead, A., Fuller, M. F., Lobley, G. E. & McDonald, J. D. (1980). British Journal of Nutrition 43, 445455.CrossRefGoogle Scholar
Reeds, P. J., Haggarty, P., Wahle, K. W. J. & Fletcher, J. M. (1982). Biochemical Journal 204, 393398.CrossRefGoogle Scholar
ReedsP. J., P. J., & Lobley, G. E. (1980). Proceedings of the Nutrition Society 39, 4352.CrossRefGoogle Scholar
Schaefer, A. L., Davis, S. R. & Hughson, G. A. (1986). British Journal of Nutrition 56, 281288.CrossRefGoogle Scholar
Sève, B., Peignier, Y. & Lebreton, Y. (1986 a). Diabète et Métabolisme, Paris 12, Abstract 118.Google Scholar
Sève, B., Reeds, P. J., Fuller, M. F., Cadenhead, A. & Hay, S. M. (1986 b). Reproduction, Nutrition, Développement 26, 849861.CrossRefGoogle Scholar
Simon, O., Münchmeyer, R., Bergner, H., Zebrowska, T. & Buraczewska, L. (1978). British Journal of Nutrition 40, 243252.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1971). Méthodes Statistiques, 6th ed. Paris: Association de Coordination Agricole.Google Scholar
Sokal, R. R. & Rohlf, F. J. (1969). Biometry. San Francisco: W. H. Freeman.Google Scholar
Soltész, G., Joyce, J. & Young, M. (1973). Biology of the Neonate 23, 139148.CrossRefGoogle Scholar
Waterlow, J. C. (1984). Quarterly Journal of Experimental Physiology 69, 409438.CrossRefGoogle Scholar
Waterlow, J. C., Garlick, P. J. & Millward, D. J. (1978). Protein Turnover in Mammalian Tissues and in the Whole Body. Amsterdam: Elsevier, North Holland.Google Scholar