Hostname: page-component-586b7cd67f-gb8f7 Total loading time: 0 Render date: 2024-11-29T03:11:23.022Z Has data issue: false hasContentIssue false

Concentrations of amino acids and urea in the plasma of the preruminant calf and estimation of the amino acid requirements

Published online by Cambridge University Press:  25 March 2008

A. P. Williams
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
R. H. Smith
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading RG2 9AT
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A study was made of factors affecting the plasma concentrations of free amino acids (PAA) and urea (PU) in calves receiving liquid diets

2. When calves were given whole milk (approximately 0·05 kg/kg live weight) at 10·00 and 17·00 hours there were marked decreases in PAA and slight decreases in PU for about 3–4 h after the morning feed. Both PAA and PU thereafter increased slightly and then remained constant for the next 10 h. In subsequent comparative experiments samples were taken 3 h after the morning feed. The variation in plasma methionine, isoleucine, leucine, phenylalanine, tyrosine and total PAA was apparently greater between than within animals

3. In calves transferred from a diet of whole milk to one consisting of diluted whole milk supplemented with appropriate nutrients, including amino acids, but deficient in methionine, PU increased markedly and plasma methionine decreased

4. Two calves (50–60 kg live weight) given the latter diet supplemented to give an intake of more than 4·5 g L-methionine/d together with 0·3 g cystine/d showed marked increases in plasma methionine. This was considered to correspond with the point at which methionine requirements were met and that under these conditions the methionine requirement for these calves (mean value ± SE) was 4·5 ± 0·2 g/d. In the same two calves PU decreased markedly with increasing levels of methionine supplementation up to 3·9 g/d and the estimated methionine requirement (mean value ± SE) was 3·9 ± 0·4 g/d.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Agricultural Research Council (1967). The Nutrient Requiremento f Farm Livestock No. 3, Pigs. London: Agricultural Research Council.Google Scholar
Blaxter, K. L. & Wood, W. A. (1952). Br. J. Nutr. 6, 56.CrossRefGoogle Scholar
Boling, J. A, Bradley, N. W. & Willard, J. C. (1972). Int. Z. VitamForsch. 42, 306.Google Scholar
Coombe, N. B. & Smith, R. H. (1973). Br. J. Nutr. 30, 331.CrossRefGoogle Scholar
Eggum, B. O. (1970). Br. J. Nutr. 24, 983.CrossRefGoogle Scholar
Iob, V., McMath, M. & Coon, W. C. (1963). J. surg. Res. 3, 85.CrossRefGoogle Scholar
Leibholz, J. (1965). Aust. J. agric. Res. 16, 973.CrossRefGoogle Scholar
Lewis, A. J. & Speer, V. C. (1973). J. Anim. Sci. 37, 104.CrossRefGoogle Scholar
Moore, S. (1963). J. biol. Chem. 238, 235.CrossRefGoogle Scholar
Munro, H. M. (1970). In Mammalian Protein Metabolism Vol. 4, p. 299 [Munro, H. N, editor]. New York: Academic Press.CrossRefGoogle Scholar
Mylrea, P. J. (1966). Res. vet. Sci. 7, 394.CrossRefGoogle Scholar
Nitsan, Z., Volcani, R., Gordin, S. & Hasdai, A. (1971). J. Dairy Sci. 54, 1294.CrossRefGoogle Scholar
Nitsan, Z., Volcani, R., Hasdai, A. & Gordin, S. (1972). J. Dairy Sci. 55, 811.CrossRefGoogle Scholar
Patureau-Mirand, P. & Pion, R. (1973). Proc. Eur. Nutr. Conf., Cambridge, 1973.Google Scholar
Patureau-Mirand, P., Prugnaud, J. & Pion, R. (1971). Proc. 10th int. Congr. Anim. Prod., Versailles.Google Scholar
Patureau-Mirand, P., Prugnaud, J. & Pion, R. (1973). Annls Biol. anim. Biochim. Biophys. 13, 225.CrossRefGoogle Scholar
Porter, J. W. G. & Hill, W. B. (1964). A. Rep. natn. Inst. Res. Dairy. p. 124.Google Scholar
Porter, J. W. G. & Rolls, B. A. (1971). Proc. Nutr. Soc. 30, 17.CrossRefGoogle Scholar
Porter, J. W. G. & Williams, A. P. (1963). Biochem. J. 87, 7P.Google Scholar
Radostits, O. M. & Bell, J. M. (1970). Can. J. Anim. Sci. 50, 405.CrossRefGoogle Scholar
Reece, W. O. & Wahlstrom, J. D. (1972). Am. J. vet. Res. 33, 2175.Google Scholar
Roy, J. H. B., Shillam, K. W. G., Hawkins, G. M. & Lang, J. M. (1958). Br.J. Nutr. 12, 123.CrossRefGoogle Scholar
Smith, R. H. (1959). Biochem. J. 71, 306.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1970). Br. J. Nutr. 24, 545.CrossRefGoogle Scholar
Spackman, D. H., Stein, W. H. & Moore, S. (1958). Analyt. Chem. 30, 1190.CrossRefGoogle Scholar
Technicon Instruments Corp. (1967). Technicon Method Sheet N-1C. Tarrytown, New York: Technicon Instruments Corp.Google Scholar
Thornton, J. R., Butler, D. G. & Willoughby, R. A. (1973). Aust. vet. J. 49, 20.CrossRefGoogle Scholar
Williams, A. P. & Smith, R. H. (1973). Proc. Nutr. Soc. 32, 52A.Google Scholar
Williams, A. P. & Smith, R. H. (1974). Proc. Nutr. Soc. 33, 35A.Google Scholar
Zimmerman, R. A. & Scott, H. M. (1965). J. Nutr. 87, 13.CrossRefGoogle Scholar