Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-09T14:16:43.076Z Has data issue: false hasContentIssue false

Concentrations and metabolism of volatile fatty acids in the fermentative organs of two species of kangaroo and the guinea-pig

Published online by Cambridge University Press:  09 March 2007

Susan J. Henning
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria 3052, Australia
F. J. R. Hird
Affiliation:
Russell Grimwade School of Biochemistry, University of Melbourne, Parkville, Victoria 3052, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Contents from the fermentative organs of the kangaroo and guinea-pig were found to have concentrations of total volatile fatty acids ranging from 50 to 140 mM.

2. In each instance acetic was the most abundant acid, followed by propionic, then n-butyric, Trace amounts of isobutyric, n-valeric and isovaleric acids were present.

3. When studiedin vitro, tissue from the wall of each fermentative organ was shown to metabolize butyrate to ketone bodies. Acetoacetate was the major ketone body. The presence of acetate and propionate did not affect ketogenesis from butyrate.

4. In the guinea-pig caecum most of the ketogenic activity resided in the mucosa.

5. The upper colon of the guinea-pig was as active as the caecum in metabolizing butyrate to ketone bodies.

6. For both the guinea-pig caecum and the kangaroo fermentative stomach, incubations with 14C-labelled butyrate showed that the proportion oxidized to CO2 was considerably less than that metabolized to ketone bodies.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1970

References

Annison, E. F., Hill, K. J. & Kenworthy, R. (1968). Br. J. Nutr. 22, 207.Google Scholar
Baird, G. D., Hibbitt, K. G., Hunter, G. D., Lund, P., Stubbs, M. & Krebs, H. A. (1968). Biochem. J. 107, 683.CrossRefGoogle Scholar
Bray, G. A. (1960). Analyt. Biochem. 1, 279.Google Scholar
EI-Shazly, K. (1952). Biochem. J. 51, 640.Google Scholar
Gray, F. V., Jones, G. B. & Pilgrim, A. F. (1960). Aust. J. agric. Res. 11, 383.CrossRefGoogle Scholar
Gray, F. V., Pilgrim, A. F. & Weller, R. A. (1954). J. exp. Biol. 31, 49.Google Scholar
Griffiths, M. & Barton, A. A. (1966). C.S.I.R.O. Wildl. Res. 11, 169.CrossRefGoogle Scholar
Hagen, P. & Robinson, K. W. (1953). Aust. J. exp. Biol. med. Sci. 31, 99.CrossRefGoogle Scholar
Hird, F. J. R., Jackson, R. B. & Weidemann, M. J. (1966). Biochem. J. 98, 394.Google Scholar
Hird, F. J. R. & Symons, R. H. (1959). Biochim. biophys. Acta 35, 422.Google Scholar
Hird, F. J. R. & Symons, R. H. (1961). Biochim. biophys. Acta 46, 457.Google Scholar
Hird, F. J. R. & Symons, R. H. (1962). Biochem. J. 84, 212.CrossRefGoogle Scholar
Hird, F. J. R. & Weidemann, M. J. (1964). Biochem. J. 93, 423.Google Scholar
Jackson, R. B. (1964). J. Chromat. 16, 306.Google Scholar
Leng, R. A. & Brett, D. J. (1966). Br. J. Nutr. 20, 541.CrossRefGoogle Scholar
Moir, R. J. (1968). Handbook of Physiology, Section 6, Vol. 5, p. 2673. [Heidel, W., editor.] Baltimore: Waverly Press Inc.Google Scholar
Moir, R. J., Somers, M. & Waring, H. (1956). Aust. J. biol. Sci. 9, 293.Google Scholar
Monk, P. R. & Forrest, W. W. (1967). J. Chromat. 30, 203.Google Scholar
Ontko, J. A. (1967). Biochim. biophys. Acta 137, 1.Google Scholar
Pennington, R. J. (1952). Biochem. J. 51, 251.Google Scholar
Phillipson, A. T. & McAnally, R. A. (1942). J. exp. Biol. 19, 199.Google Scholar
Shäfer, E. A. & Williams, D. J. (1876). Proc. Zool. Soc. Lond., p. 165.Google Scholar
Williams, V. J. (1965). Aust. J. agric. Res. 16, 77.CrossRefGoogle Scholar
Williamson, D. H., Mellanby, J. & Krebs, H. A. (1962). Biochem. J. 82, 90.Google Scholar