Hostname: page-component-78c5997874-t5tsf Total loading time: 0 Render date: 2024-11-20T01:48:03.220Z Has data issue: false hasContentIssue false

Comparative studies on the hypercholesterolaemia induced by excess dietary tyrosine or polychlorinated biphenyls in rats*

Published online by Cambridge University Press:  09 March 2007

Sahoshi Nagaoka
Affiliation:
Laboratory of Nutritional Biochemistry, Department of Agricultural Chemistry, Nagoya University, Nagoya 464, Japan
Mitsuhiro Kato
Affiliation:
Laboratory of Nutritional Biochemistry, Department of Agricultural Chemistry, Nagoya University, Nagoya 464, Japan
Yoritaka Aoyama
Affiliation:
Laboratory of Nutritional Biochemistry, Department of Agricultural Chemistry, Nagoya University, Nagoya 464, Japan
Akira Yoshida†
Affiliation:
Laboratory of Nutritional Biochemistry, Department of Agricultural Chemistry, Nagoya University, Nagoya 464, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effects of dietary polychlorinated biphenyls (PCB) and excess tyrosine on serum and liver lipids, urinary ascorbic acid and catecholamines were compared in male Wistar rats.

2. Serum levels of cholesterol, urinary ascorbic acid, norepinephrine, epinephrine, dopamine and histamine were significantly increased in rats given either PCB or excess tyrosine.

3. The hypercholesterolaemia induced by PCB or excess tyrosine was blocked by the adrenergic α-blocker, phenoxybenzamine.

4. The present results suggest causal interrelations between the hypercholesterolaemia induced by dietary PCB or excess tyrosine and the secretion of catecholamines.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1986

References

REFERENCES

Anton, A. H. & Sayre, D. F. (1969). Journal of Pharmacological and Experimental Therapeutics 166, 285292.Google Scholar
Bartlett, G. R. (1959). Journal of Biological Chemistry 234, 466468.CrossRefGoogle Scholar
Dall'aglio, E., Chang, H. & Reaven, G. M. (1983). Metabolism 32, 510513.CrossRefGoogle ScholarPubMed
Duncan, D. B. (1955). Biometrics 11, 142.CrossRefGoogle Scholar
Edwards, P. A. (1975). Archives of Biochemistry and Biophysics 170, 188203.CrossRefGoogle Scholar
Euler, U. S. v. (1964). Clinical Pharmacology and Therapeutics 5, 398404.CrossRefGoogle Scholar
Folch, J., Lees, M. & Sloane Stanley, G. H. (1957). Journal of Biological Chemistry 226 497509.CrossRefGoogle Scholar
Gibbs, F. P. (1970). American Journal of Physiology 219, 288292.CrossRefGoogle Scholar
Hansen, B. C., Schielke, G. P., Jen, K.-L. C., Wolfe, R. A., Movahed, H. & Pek, S. B. (1982). American Journal of Physiology 242, E40E46.Google Scholar
Harper, A. E. (1959). Journal of Nutrition 68, 405418.CrossRefGoogle Scholar
Harry, D. S., Dini, M. & McIntyre, N. (1973). Biochimica et Biophysica Acta 296, 209220.CrossRefGoogle Scholar
Heimburger, M., Denoroy, L., Renaud, B., Sassard, J., Cohen, Y. & Wepierre, J. (1983). Biochemical Pharmacology 32, 27392743.CrossRefGoogle Scholar
Horio, F. & Yoshida, A. (1982). Journal of Nutrition 112, 416425.CrossRefGoogle Scholar
Ishikawa, T. T., McNeely, S., Steiner, P. M., Glueck, C. L., Mellies, M., Gartside, P. S. & McMillin, C. (1978). Metabolism 27, 8996.CrossRefGoogle Scholar
Kato, N. & Yoshida, A. (1980). Nutrition Reports International 21, 107112.Google Scholar
Kato, N. & Yoshida, A. (1981). Nutrition Reports International 23, 825831.Google Scholar
Kissinger, P. T., Bruntlett, C. S., Davis, G. C., Felice, L. J., Riggin, R. M. & Shoup, R. E. (1977). Clinical Chemistry 23, 14491455.CrossRefGoogle Scholar
Kunihara, M. & Oshima, T. (1983). Journal of Lipid Research 24, 639644.CrossRefGoogle Scholar
Kvetnansky, R. & Mikulaj, L. (1970). Endocrinology 87, 738743.CrossRefGoogle Scholar
Kvetnansky, R., Sun, C. L., Lake, C. R., Thoa, N. B., Torda, T. & Kopin, I. J. (1978). Endocrinology 103, 18691874.CrossRefGoogle Scholar
Kvetnansky, R., Weise, V. K., Thoa, N. B. & Kopin, I. J. (1979). Journal of Pharmacology and Experimental Therapeutics 209, 287291.Google Scholar
La Du, B. N. & Zannoni, V. G. (1961). Annals of the New York Academy of Sciences 92, 175191.CrossRefGoogle Scholar
Nagaoka, S., Aoyama, Y. & Yoshida, A. (1985). Nutrition Reports International 31 11371148.Google Scholar
Nandi, B. K., Subramanian, N., Majumder, A. K. & Chatterjee, I. B. (1974). Biochemical Pharmacology 23, 643647.CrossRefGoogle Scholar
Nepokroeff, C. M., Lakshmanan, M. R., Ness, G. C., Dugan, R. E. & Porter, J. W. (1974). Archives of Biochemistry and Biophysics 160, 387393.CrossRefGoogle Scholar
Ohara, T. (1973). Shokuhinbunseki Handbook, pp. 301305. Tokyo: Kenpaku Co.Google Scholar
Orr, M. L. & Watt, B. K. (1957). Amino Acid Content of Foods. Washington DC: U.S. Dept. of Agriculture.Google Scholar
Pearson, S., Stern, S. & McGavack, T. H. (1953). Analytical Biochemistry 25, 813814.Google Scholar
Quazi, S. (1985). Effect of xenobiotics on cholesterol metabolism in rats. Ph.D. Thesis, Nagoya University, Nagoya, Japan.Google Scholar
Rajan, G. & Ramasarma, T. (1977). Biochemical Journal 162, 493499.Google Scholar
Reiser, R., Clark, D. A., Sorrels, M. F., Gibson, B. S., Williams, M. C. & Wilson, F. H. (1966). Journal of Atherosclerosis Research 6, 561579.CrossRefGoogle Scholar
Sato, P. H. & Zannoni, V. G. (1976). Journal of Pharmacology and Experimental Therapeutics 198, 295307.Google Scholar
Schwartz, J. H., Young, J. B. & Landsberg, L. (1983). Journal of Clinical Investigation 72, 361370.CrossRefGoogle Scholar
Subramanian, N., Nandi, B. K., Majumder, A. K. & Chatterjee, I. B. (1974). Biochemical Pharmacology 23, 637641.CrossRefGoogle Scholar
Wahlefeld, A. W. (1974). Methods of Enzymatic Analysis 4, 18311835.CrossRefGoogle Scholar
Zilversmit, D. B. & Davis, A. K. (1950). Journal of Laboratory and Clinical Medicine 35, 151160.Google Scholar