Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-28T23:20:49.207Z Has data issue: false hasContentIssue false

Comparative effects of dietary wheat bran and its morphological components (aleurone and pericarp-seed coat) on volatile fatty acid concentrations in the rat

Published online by Cambridge University Press:  09 March 2007

Bing-Qin Cheng
Affiliation:
Department of Biochemistry, La Trobe University, Bundoora, Victoria 3083, Australia
Rodney P. Trimble
Affiliation:
CSIRO (Australia) Division of Human Nutrition, Glenthorne Laboratory, Majors Road, O'Halloran Hill, South Australia 5158, Australia
Richard J. Illman
Affiliation:
CSIRO (Australia) Division of Human Nutrition, Glenthorne Laboratory, Majors Road, O'Halloran Hill, South Australia 5158, Australia
Bruce A. Stone
Affiliation:
Department of Biochemistry, La Trobe University, Bundoora, Victoria 3083, Australia
David L. Topping
Affiliation:
CSIRO (Australia) Division of Human Nutrition, Glenthorne Laboratory, Majors Road, O'Halloran Hill, South Australia 5158, Australia
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Adult male rats were fed on diets containing 100 g dietary fibre/kg either as α-cellulose or wheat bran or the pericarp-seed coat or aleurone layers prepared from that bran by sequential milling and air elutriation and electrostatic separation.

2. After 10 d, concentrations of total volatile fatty acids (VFA) in caecal fluid were significantly different between groups and fell in the order: aleurone > wheat bran > pericarp-seed coat > cellulose. This ranking probably reflected the ease of fermentation of fibre polysaccharides by colonic bacteria which also resulted in a considerably higher faecal bacterial mass in the aleurone group.

3. Because of the differences in the volume of caecal digesta, the mass of caecal VFA was considerably the highest in the aleurone group, intermediate with wheat bran and equally low in the pericarp-seed coat and cellulose groups.

4. The diet based on aleurone gave a relatively higher proportion of propionate but with both pericarp-seed coat and wheat bran the contribution of butyrate was raised.

5. VFA concentrations in hepatic portal venous plasma were proportional to caecal concentrations with very high (> 3 mM) values being recorded in the aleurone group.

6. The findings are discussed in relation to the apparent susceptibility of the morphological components of wheat bran to fermentation by large bowel bacteria.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1987

References

REFERENCES

Argenzio, R. A. & Stevens, C. E. (1984). Proceedings of the Nutrition Society 43, 1323.CrossRefGoogle Scholar
Asp, N. G., Johansson, C. G., Hallmer, H. & Siljeström, M. (1983). Journal of Agricultural and Food Chemistry 31, 476482.CrossRefGoogle Scholar
Association of Official Analytical Chemists (1984). Official Methods of Analysis, 14th ed. Methods 7.066–7.075. Arlington, Va, USA: AOAC.Google Scholar
Bacic, A. & Stone, B. A. (1981 a). Australian Journal of Plant Physiology 8, 453474.Google Scholar
Bacic, A. & Stone, B. A. (1981 b). Australian Journal of Plant Physiology 8, 475495.Google Scholar
Chen, W.-J. L., Anderson, J. W. & Jennings, D. (1984). Proceedings of the Society for Experimental Biology and Medicine 175, 215218.Google Scholar
Hove, E. L. & King, S. (1979). Journal of Nutrition 109, 12741278.CrossRefGoogle Scholar
Illman, R. J., Trimble, R. P., Snoswell, A. M. & Topping, D. L. (1982). Nutrition Reports International 26, 439446.Google Scholar
Imoto, S. & Namioka, S. (1978). Journal of Animal Science 47, 479487.CrossRefGoogle Scholar
Kim, K.-I., Benevenga, N. J. & Grummer, R. H. (1978). Journal of Animal Science 46, 16481657.Google Scholar
Lang, J. A. & Briggs, G. M. (1976). In Fiber in Human Nutrition, pp. 151169 [Spiller, G. A. and Amen, R. J., editors]. New York and London: Plenum Press.Google Scholar
Mares, D. J. & Stone, B. A. (1973). Australian Journal of Biological Science 26, 793812.CrossRefGoogle Scholar
Nyman, M. & Asp, N.-G. (1982). British Journal of Nutrition 47, 357366.Google Scholar
Remesy, C., Demigne, C. & Chartier, F. (1980). Reproduction, Nutrition et Developpement 20, 13391349.CrossRefGoogle Scholar
Ring, S. G. & Selvendran, R. R. (1980). Phytochemistry 19, 17231730.CrossRefGoogle Scholar
Roediger, W. E. W. (1982). In Colon and Nutrition, pp. 1124 [Kaspar, H. and Goebell, H., editors]. Lancaster, Boston and The Hague: MTP Press.Google Scholar
Sakata, T. & Yajima, T. (1984). Quarterly Journal of Experimental Physiology 69, 639648.CrossRefGoogle Scholar
Smith, C. J. & Bryant, M. P. (1979). American Journal of Clinical Nutrition 32, 149157.CrossRefGoogle Scholar
Stephen, A. M. & Cummings, J. H. (1980). Nature 281, 283284.CrossRefGoogle Scholar
Storer, G. B., Illman, R. J., Trimble, R. P., Snoswell, A. M. & Topping, D. L. (1984). Nutrition Research 4, 701707.CrossRefGoogle Scholar
Storer, G. B., Trimble, R. P., Illman, R. J., Snoswell, A. M. & Topping, D. L. (1983). Nutrition Research 3, 519526.CrossRefGoogle Scholar
Topping, D. L., Clark, D. G., Storer, G. B., Trimble, R. P. & Illman, R. J. (1979). Biochemical Journal 184, 97106.Google Scholar
Topping, D. L. & Illman, R. J. (1986). Medical Journal of Australia 144, 307309.Google Scholar
Topping, D. L., Illman, R. J., Taylor, M. N. & McLntosh, G. H. (1985 a). Annals of Nutrition and Metabolism 29, 325331.Google Scholar
Topping, D. L., Illman, R. J. & Trimble, R. P. (1985 b). Nutrition Reports Internatiotial 32, 809814.Google Scholar