Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-30T04:53:14.938Z Has data issue: false hasContentIssue false

The chemical nature of the bound nicotinic acid of wheat bran: studies of nicotinic acid-containing macromolecules

Published online by Cambridge University Press:  09 March 2007

J. B. Mason
Affiliation:
Dunn Nutritional Laboratory, University of Cambridge and Medical Research Council, Milton Road, Cambridge
Norah Gibson
Affiliation:
Dunn Nutritional Laboratory, University of Cambridge and Medical Research Council, Milton Road, Cambridge
E. Kodicek
Affiliation:
Dunn Nutritional Laboratory, University of Cambridge and Medical Research Council, Milton Road, Cambridge
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Preparations of bound nicotinic acid obtained from wheat bran by an acid extraction procedure (‘niacytin preparations’) were resolved into several nicotinic acid-containing components.

2. Extraction of wheat bran under neutral conditions yielded 62% of the bound nicotinic acid in solution; of this 90% was non-diffusible. Methods were developed which gave high yields of ‘non-diffusible nicotinic acid’ preparations.

3. The bound nicotinic acid in the latter preparation was linked to macromolecules of mol. wt about 1500 to 17000 daltons, approximately 60% of which were polysaccharide and 40% peptide or glycopeptide in character.

4. o-Aminophenol, and ferulic and sinapic acids, are also contained in macromolecules in wheat bran, but are not directly associated with the bound nicotinic acid.

5. The significance of these results in explaining the nutritional unavailability of bound nicotinic acid is discussed.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1973

References

Axelrod, B. (1965). In Plant Biochemistry p. 245252. [Bonner, J. and Varner, J. E., editors]. London: Academic Press.Google Scholar
Brin, M. (1966). Meth. Enzym. 9, 509.Google Scholar
Carnegie, P. R. (1961). Biochem. J. 78, 697.CrossRefGoogle Scholar
Carnegie, P. R. (1963). Biochem. J. 89, 459.CrossRefGoogle Scholar
Chaudhuri, D. K. & Kodicek, E. (1950). Nature, Lond. 165, 1022.CrossRefGoogle Scholar
Christianson, D. D., Wall, J. S., Dimler, R. J. & Booth, A. N. (1968). J. Agric. Fd Chem. 16, 100.CrossRefGoogle Scholar
Das, M. L. & Guha, B. C. (1960). J. biol. Chem. 235, 2971.CrossRefGoogle Scholar
Galambos, J. T. (1967). Analyt. Biochem. 19, 119.CrossRefGoogle Scholar
Guha, B. C. & Das, M. L. (1957). Nature, Lond. 180, 1285.CrossRefGoogle Scholar
Hanson, L. A., Johansson, B. G. & Rymo, L. (1966). Clinica chem. Acta 14, 391.CrossRefGoogle Scholar
Harborne, J. B. (1964). In Biochemistry of Phenolic Compounds Ch. 4 [Harborne, J. B., editor]. London: Academic Press.Google Scholar
Horder, Dodds, C. & Moran, T. (1954). In Bread p. 37. London: Constable.Google Scholar
Kodicek, E. (1940 a). Biochem. J. 34, 712.CrossRefGoogle Scholar
Kodicek, E. (1940 b). Biochem. J. 34, 724.CrossRefGoogle Scholar
Kodicek, E. (1962). Biblthca Nutr. Dieta 4, 109.Google Scholar
Kodicek, E. & Reddi, K. K. (1951). Nature, Lond. 168, 175.CrossRefGoogle Scholar
Kodicek, E. & Wilson, P. W. (1959). Br. J. Nutr. 13, 418.CrossRefGoogle Scholar
Kodicek, E. & Wilson, P. W. (1960). Biochem. J. 76, 27P.Google Scholar
Layne, E. (1957). Meth. Enzym. 3, 450.Google Scholar
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951). J. biol. Chem. 193, 265.CrossRefGoogle Scholar
Mason, J. B. (1969). Biochemistry of niacytin. PhD Thesis, University of Cambridge.Google Scholar
Mason, J. B., Gibson, N. & Kodicek, E. (1971). Biochem. J. 125, 117P.CrossRefGoogle Scholar
Mason, J. B. & Kodicek, E. (1970 a). Biochem. J. 120, 509.CrossRefGoogle Scholar
Mason, J. B. & Kodicek, E. (1970 b). Biochem. J. 120, 515.CrossRefGoogle Scholar
Morris, C. J. O. R. (1964). J. Chromatog. 16, 167.CrossRefGoogle Scholar
Neukom, H., Proviodoli, L., Gremli, H. & Hui, P. (1967). Cereal Chem. 44, 238.Google Scholar
Painter, T. J. & Neukom, H. (1968). Biochim. biophys. Acta 158, 363.CrossRefGoogle Scholar
Pharmacia Fine Chemicals (1966). Sephadex – Gel-filtration in Theory and Practice p. 48. Uppsala, Sweden: Beckman Hansson AB/Eklunds & Vasatryck.Google Scholar
Pridham, J. B. (1965). A. Rev. Pl. Physiol. 16, 13.CrossRefGoogle Scholar
Sarkar, P. K., Ghosh, H. P. & Guha, B. C. (1962). Sci. Cult. 28, 344.Google Scholar
Sarkar, P. K., Ghosh, H. P. & Guha, B. C. (1964). Int. Congr. Biochem. VI. New York Abstracts vol. 5, p. 449.Google Scholar
Simmonds, D. H. & Winzor, D. J. (1961). Nature, Lond. 189, 306.CrossRefGoogle Scholar
Synge, R. L. M. (1968). A. Rev. Pl. Physiol. 19, 113.CrossRefGoogle Scholar
Whitaker, J. R. (1963). Analyt. Chem. 35, 1950.CrossRefGoogle Scholar
White, L. M. & Secor, G. E. (1953). Archs Biophys. Biochem. 43, 60.CrossRefGoogle Scholar