Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-22T07:53:46.871Z Has data issue: false hasContentIssue false

Chemical factors affecting the intestinal absorption of zinc in vitro and in vivo

Published online by Cambridge University Press:  09 March 2007

C. J. Seal
Affiliation:
Department of Biological Sciences, University of Lancaster, Lancaster LA1 4YQ
F. W. Heaton
Affiliation:
Department of Biological Sciences, University of Lancaster, Lancaster LA1 4YQ
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Everted sacs of rat duodenum and ileum were used to study the effect of anions and organic ligands on the absorption of zinc. The uptake per unit weight of tissue was greater in duodenum than ileum, and it was influenced by the Zn concentration and pH of the incubation medium.

2. The Zn uptake from inorganic salts in simple buffered medium varied in the order zinc sulphate > zinc chloride > zinc phosphate. Zinc acetate was more effective and zinc citrate less effective than ZnCl2. Addition of aspartic acid or histidine to ZnCl2 increased the uptake but galactose or lactose decreased it. 2-Picolinic acid greatly increased the Zn uptake but 4-picolinic acid reduced it.

3. When incubated with intestinal sacs after incorporation into a synthetic rat diet, only ZnSO4 and 2-picolinic acid increased Zn uptake compared with ZnCl2, but zinc citrate and 4-picolinic acid still tended to decrease it.

4. Metabolic balance studies showed no significant differences in the faecal excretion, total excretion or retention of Zn between rats receiving diets containing different forms of Zn. ZnSO4, zinc citrate and particularly 2-picolinic acid increased the urinary excretion of Zn.

5. The significance of these results is discussed in relation to the suitability of methods for investigating Zn absorption and the importance of Zn-binding ligands.

Type
Papers on General Nutrition
Copyright
Copyright © The Nutrition Society 1983

References

REFERENCES

Ballou, J. E. & Thompson, R. C. (1961). Health Physics 6, 618.Google Scholar
Becker, W. M. & Hoekstra, W. G. (1971). In Intestinal Absorption of Metal Ions, Trace Elements and Radionucleotides, pp. 229256 [Skoryna, S. C. and Waldron-Edwards, D., editors]. New York: Pergamon Press.Google Scholar
Davies, N. T. (1980). British Journal of Nutrition 43, 189203.Google Scholar
Evans, G. W. & Johnson, P. E. (1980). Pediatric Research 14, 876880.CrossRefGoogle Scholar
Evans, G. W., Johnson, E. C. & Johnson, P. E. (1979). Journal of Nutrition 109, 12581264.CrossRefGoogle Scholar
Fleming, I. D. & Pegler, H. F. (1963). Analyst, London 88, 967968.Google Scholar
Giroux, E. G. & Prakash, N. J. (1977). Journal of Pharmaceutical Sciences 66, 391395.Google Scholar
Gubler, C. J., Lahey, M. E., Ashenbrucker, H., Cartwright, G. E. & Wintrobe, M. M. (1952). Journal of Biological Chemistry 196, 209220.Google Scholar
Heth, D. A. & Hoekstra, W. G. (1965). Journal of Nutrition 85, 367374.Google Scholar
House, W. A., Welch, R. M. & Van Campen, D. R. (1982). Journal of Nutrition 112, 941953.CrossRefGoogle Scholar
Jackson, M. J., Jones, D. A. & Edwards, R. H. T. (1981). British Journal of Nutrition 46, 1527.Google Scholar
Likuski, H. J. A. & Forbes, R. M. (1965). Journal of Nutrition 85, 230234.Google Scholar
Lönnerdal, B., Stanislowski, A. G. & Hurley, L. S. (1980). Journal of Inorganic Biochemistry 12, 7178.Google Scholar
Methfessel, A. H. & Spencer, H. (1973). Journal of Applied Physiology 34, 5862.Google Scholar
Miller, D. D., Schricker, B. R., Rasmussen, R. R. & Van Campen, D. R. (1981). American Journal of Clinical Nutrition 34, 22482256.CrossRefGoogle Scholar
O'Dell, B. L. & Savage, J. E. (1960). Proceedings of the Society for Experimental Biology and Medicine 103, 304306.CrossRefGoogle Scholar
Oestreicher, P. & Cousins, R. J. (1982). Journal of Nutrition 112, 19781982.CrossRefGoogle Scholar
Pearson, W. N., Schwink, T. & Reich, M. (1966). In Zinc Metabolism, pp. 239249 [Prasad, A. S., editor]. Springfield, Ill.: C. C. Thomas.Google Scholar
Schwarz, F. J. & Kirchgessner, M. (1975). Zeitschrift fuer Tierphysiologie, Tierernaehrung und Futtermittelkunde 35, 257266.CrossRefGoogle Scholar
Schwarz, F. J. & Kirchgessner, M. (1978). In Trace Element Metabolism in Man and Animals, vol. 3, pp. 110115 [Kirchgessner, M., editor]. Freising-Weihenstaphen, West Germany: Arbeitskreis Tierenahrungsforchung Weihenstephan.Google Scholar
Smith, K. T., Cousins, R. J., Silbon, B. L. & Failla, M. L. (1978). Journal of Nutrition 108, 18491857.Google Scholar
Van Campen, D. R. & Mitchell, E. A. (1965). Journal of Nutrition 86, 120124.CrossRefGoogle Scholar
Weigand, E. & Kirchgessner, M. (1978). Nutrition and Metabolism 22, 101112.Google Scholar