Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-22T08:45:10.476Z Has data issue: false hasContentIssue false

Changes in the activity of citrate lyase, malic enzyme and acetyl-CoA synthetase in rat liver after short-term and long-term feeding with ethanol

Published online by Cambridge University Press:  24 July 2007

E. Fellenius
Affiliation:
Alcohol Research Group, Swedish Medical Research Council, Institute of Zoophysiology, University of Uppsala, Uppsala, Sweden
U. Nisbeth
Affiliation:
Alcohol Research Group, Swedish Medical Research Council, Institute of Zoophysiology, University of Uppsala, Uppsala, Sweden
L. Pilström
Affiliation:
Alcohol Research Group, Swedish Medical Research Council, Institute of Zoophysiology, University of Uppsala, Uppsala, Sweden
K.-H. Kiessling
Affiliation:
Alcohol Research Group, Swedish Medical Research Council, Institute of Zoophysiology, University of Uppsala, Uppsala, Sweden
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. The effect of short-term and long-term feeding (0–80 d) with a liquid diet containing ethanol on the activity of rat hepatic enzymes related to lipogenesis has been evaluated. Carbohydrates were isoenergetically substituted for ethanol in the control animals.

2. The maximum concentration of triglycerides in the livers was reached after about 30 d, when it was almost three times as high as in the control animals. The activity of malic enzyme (EC 1·1·1·40) and ATP citrate lyase (EC 4·1·3·8) decreased significantly in the ethanol group, compared with the control rats, within 10 d and remained low during the rest of the experiment (80 d). After 20 d, the acetyl-CoA synthetase (EC 6·2·1·1) activity increased significantly in the livers of the ethanol-fed rats but fell subsequently to values similar to those in the livers of the control rats. Thus, despite a pronounced increase in the amount of triglyceride in the livers of rats on a liquid diet containing ethanol, there was a dramatic decrease in the activity of the enzymes (malic enzyme and citrate lyase) involved in lipogenesis.

3. The almost unchanged activity of acetyl-CoA synthetase shows that the utilization of acetate, produced when ethanol is oxidized, is not stimulated by long-term feeding with ethanol. The involvement of citrate lyase in various postulated shuttles for the transport of reducing equivalents across the mitochondrial membrane and the role of malic enzyme in the microsomal ethanol-oxidizing system are discussed.

Type
General Nutrition
Copyright
Copyright © The Nutrition Society 1973

References

REFERENCES

Angielski, S. & Szutowicz, A. (1967). Abstr. 4th Mtg Fedn Eur. Biochem. Soc., Oslo p. 58.Google Scholar
Atkinson, D. E. & Walton, G. M. (1967). J. biol. Chem. 242, 3239.CrossRefGoogle Scholar
Best, C. H., Hartroft, W. S., Lucas, C. C. & Ridout, J. H. (1949). Br. med. J. ii, 1001.CrossRefGoogle Scholar
Bhaduri, A. & Srere, P. A. (1963). Biochim. biophys. Acta 70, 221.CrossRefGoogle Scholar
Bode, Ch., Stahler, E., Kono, H. & Goebell, H. (1970). Biochim. biophys. Acta 210, 448.CrossRefGoogle Scholar
Borst, P. (1963). In Funktionelle und Morphologische Organization der Zelle, p. 137 [Karlsson, P., editor]. Berlin, Heidclberg and New York: Springer Verlag.CrossRefGoogle Scholar
Bramhall, S., Noack, N., Wu, M. & Lowenberg, J. R. (1969). Analyt. Biochem. 31, 146.CrossRefGoogle Scholar
Bucher, T. & Klingenberg, M. (1958). Angew. Chem. 70, 552.CrossRefGoogle Scholar
D'Adamo, A. F. Jr & Haft, D. E. (1965). J. biol. Chem. 240, 613.CrossRefGoogle Scholar
Dickinson, F. M. & Dalziel, K. (1967). Biochem. J. 104, 165.CrossRefGoogle Scholar
Eggstein, M. & Kreutz, F. K. (1966). Klin. Wschr. 44, 262.CrossRefGoogle Scholar
Fellenius, E., Nisbeth, U., Kicssling, K.-H. & Pilstrom, L. (1972). Proc. Nutr. Sol. 31, 37A.Google Scholar
Fitch, W. M. & Chaikoff, I. L. (1960). J. biol. Chem. 235, 554.CrossRefGoogle Scholar
Freedland, R. A. & Harper, A. E. (1958). J. biol. Chem. 234, 1350.CrossRefGoogle Scholar
Grunnet, N. (1970). Biochem. biophys. Res. Commun. 41, 909.CrossRefGoogle Scholar
Hassinen, I. (1967). Annls Med. exp. Fenn. 45, 35.Google Scholar
Hsu, R. Y. & Lardy, H. A. (1969). Meth. Enzymol. 13, 230.CrossRefGoogle Scholar
Isselbacher, K. J. & Carter, E. A. (1970). Biochem. biophys. Res. Commun. 39, 530.CrossRefGoogle Scholar
Klaasen, C. D. (1969). Proc. Sac. exp. Bial. Med. 132, 1099.CrossRefGoogle Scholar
Kornacker, M. S. & Lowenstein, J. M. (1965 a). Biochem. J. 94, 209.CrossRefGoogle Scholar
Kornacker, M. S. & Lowenstein, J. M. (1965 b). Biochem. J. 95, 823.CrossRefGoogle Scholar
Lehninger, A. L. (1951). J. biol. Chem. 190, 345.CrossRefGoogle Scholar
Lieber, C. S. (1967). A. Rev. Med. 18, 35.CrossRefGoogle Scholar
Lieber, C. S. & DeCarli, L. M. (1970). J. biol. Chem. 245, 2505.CrossRefGoogle Scholar
Lieber, C. S. & Schmid, R. (1961). J. clin. Invest. 40, 394.CrossRefGoogle Scholar
Lipmann, F. & Tuttle, L. C. (1945). J. biol. Chem. 159, 21.CrossRefGoogle Scholar
Lundquist, F., Thieden, H. & Grunnet, N. (1971). In Metabolic Changes Induced by Ethanol, p. 108 [Martini, G. A. and Bode, Ch., editors]. Berlin, Heidelberg and New York: Springer Verlag.CrossRefGoogle Scholar
Mallov, S. (1955). Proc. SOL. exp. Biol. Med. 88, 246.CrossRefGoogle Scholar
Olivercrona, T., Hernell, O., Johnson, O., Fex, G., Wallinder, L. & Sandgren, O. (1972). Q. Jl Stud.Google Scholar
Pilstrom, L., Fellenius, B. & Kiessling, K.-H. (1973). Br. J. Nutr. 29, 297.CrossRefGoogle Scholar
Sacktor, B. & Dick, A. R. (1964). Science, N. Y. 145, 606.CrossRefGoogle Scholar
Shrago, E., Lardy, H. A., Nordlie, R. C. & Foster, D. O. (1963). J. biol. Chem. 238, 3188.CrossRefGoogle Scholar
Srere, P. A. & Lipmann, F. (1953). J. Am. chem. Soc. 75, 4874.CrossRefGoogle Scholar
Sullivan, A. C., Miller, O. N., Wittman, J. S. & Hamilton, J. G. (1971). J. Nutr. 101, 265.CrossRefGoogle Scholar
Tephly, T. R., Tinelli, F. & Watkins, W. D. (1969). Science, N. Y. 166, 627.CrossRefGoogle Scholar
Tepperman, H. M. & Tepperman, J. (1964). Am. J. Physiol. 206, 357.CrossRefGoogle Scholar
Whereat, A. F., Orishimo, M. W., Nelson, J. & Phillips, S. J. (1969). J. biol. Chem. 244, 6498.CrossRefGoogle Scholar
Wise, E. M. Jr & Ball, E. G. (1964). Proc. Nutr. Acad. Sci. U.S.A. 52, 1255.CrossRefGoogle Scholar
Yeh, Y.-Y., Leveille, G. A. & Wiley, J. H. (1970). J. Nutr. 100, 917.CrossRefGoogle Scholar