Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-30T06:28:25.505Z Has data issue: false hasContentIssue false

Changes in serum creatine kinase and other biological measurements associated with musculature in children recovering from kwashiorkor

Published online by Cambridge University Press:  09 March 2007

S. Reindorp
Affiliation:
MRC Child Nutrition Unit, Mulago Hospital, Kampala, Uganda*
R. G. Whitehead
Affiliation:
MRC Child Nutrition Unit, Mulago Hospital, Kampala, Uganda*
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Changes in serum creatine kinase activity, creatinine excretion, mid-upper arm and thigh muscle circumference and the ‘X-ray muscle shadow weight’ of the upper arm and thigh muscles have been compared in children recovering from kwashiorkor.

2. Creatine kinase activity rose as the health of the child improved but was subject to large fluctuations mainly associated with the Occurrence of infections. For this reason it is unlikely to be of value in assessing nutritional status on the basis of changes in musculature.

3. Creatinine excretion also increased with treatment and was more consistent. This measurement should be of much greater value than serum creatine kinase.

4. The anthropometric measurements were relatively insensitive to quite large changes in limb musculature.

5. Assessment of musculature by soft-tissue X-rays of the limbs appeared to be a sensitive method of potential value.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1971

References

Arnhold, R. (1969). J. trop. Ped. 15, 243.CrossRefGoogle Scholar
Arroyave, G. & Wilson, D. (1961). Am. J. clin. Nutr. 9, 170.CrossRefGoogle Scholar
Arroyave, G., Sandstead, H. & Schumacher, R. (1958). Fedn Proc. Fedn Am. Socs exp. Biol. 17, 469.Google Scholar
Balmer, S. E. & Rutishauser, I. H. E. (1968). J. Pediat. 73, 783.CrossRefGoogle Scholar
Cramér, K., Cramér, H. & Selander, S. (1967). Clinica chim. Acta 15, 331.CrossRefGoogle Scholar
Garn, S. M. (1962). Am. J. clin. Nutr. 11, 418.CrossRefGoogle Scholar
Griffiths, P. D. (1966). Clinica chim. Acta 13, 413.CrossRefGoogle Scholar
Hughes, B. P. (1962). Clinica chim. Acta 7, 597.CrossRefGoogle Scholar
Jelliffe, D. B. (1966). Monograph Ser. W.H.O. no. 53.Google Scholar
Jelliffe, E. F. & Jelliffe, D. B. (1969). J. trop. Ped. 15, 177.Google Scholar
Leonard, P. J., MacWilliam, K. M. & Jones, K. W. (1965). Trans. R. Soc. trap. Med. Hyg. 59, 582.CrossRefGoogle Scholar
McFie, J. & Welbourn, H. F. (1962). J. Nutr. 76, 97.CrossRefGoogle Scholar
Mendes, C. B. & Waterlow, J. C. (1958). Br. J. Nutr. 12, 74.CrossRefGoogle Scholar
Picou, D., Alleyne, G. A. O. & Seakins, A. (1965). Clin. Sci. 29, 517.Google Scholar
Reindorp, S. (1970). Changes related to muscle in protein calorie malnutrition. PhD Thesis, University of Cambridge.Google Scholar
Srikantia, S. G., Pargaonkar, V. U. & Reddy, V. (1965). Am. J. clin. Nutr. 16, 436.CrossRefGoogle Scholar
Standard, K. I., Wills, V. G. & Waterlow, J. C. (1959). Am. J. clin. Nutr. 7, 271.CrossRefGoogle Scholar
Staff, T. H. E. (1968). E. Afr. med. J. 45, 399.Google Scholar
Stuart, H. C. & Stevenson, S. S. (1954). In Textbook of Pediatrics 8th ed., p. 48 [Nelson, W. E., editor] Philadelphia: Saunders.Google Scholar
Taussky, H. H. (1956). Clinica chim. Acta 1, 210.CrossRefGoogle Scholar
Viteri, F. E., Arroyave, G. & Béhar, M. (1966). Proc. int. Congr. Nutr. VII. Hamburg p. 46.Google Scholar
Waterlow, J. C. (1956). W. Indian med. J. 5, 167.Google Scholar
Whitehead, R. G. (1968). In Calorie Deficiencies and Protein Deficiencies p. 115 [McCance, R. A. and Widdowson, E. M., editors]. London: Churchill.Google Scholar