Hostname: page-component-586b7cd67f-tf8b9 Total loading time: 0 Render date: 2024-12-01T12:02:58.887Z Has data issue: false hasContentIssue false

Changes in plasma amino acid concentrations in man after ingestion of an amino acid mixture simulating casein, and a tryptic hydrolysate of casein

Published online by Cambridge University Press:  09 March 2007

T. C. Marrs
Affiliation:
Department of Experimental Chemical Pathology, Vincent Square Laboratories of Westminster Hospital, 124 Vauxhall Bridge Road, London SW1V 2RH
Jill M. Addison
Affiliation:
Department of Experimental Chemical Pathology, Vincent Square Laboratories of Westminster Hospital, 124 Vauxhall Bridge Road, London SW1V 2RH
D. Burston
Affiliation:
Department of Experimental Chemical Pathology, Vincent Square Laboratories of Westminster Hospital, 124 Vauxhall Bridge Road, London SW1V 2RH
D. M. Matthews
Affiliation:
Department of Experimental Chemical Pathology, Vincent Square Laboratories of Westminster Hospital, 124 Vauxhall Bridge Road, London SW1V 2RH
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Plasma amino acid levels have been estimated at 0, 15, 30 and 45 min after ingestion of doses of (1) an amino acid mixture simulating casein and (2) a tryptic hydrolysate of casein consisting mainly of oligopeptides. Both doses contained the same amount of nitrogen.

2. After ingestion of both preparations, there was a prompt increase in plasma amino acid levels, followed by a decrease. No such change occurred in fasting subjects. There were no significant differences between increments in plasma amino acid levels after ingestion of the amino acid mixture and the corresponding increments after ingestion of the tryptic hydrolysate.

3. Correlations were found between the areas under the curves for individual amino acid concentrations, after ingestion of the two preparations, and the amino acid composition of casein. The results do not suggest that increases in plasma amino acid levels following small doses of protein digestion products are the result of circadian changes, or that such increases are ‘swamped’ by absorption of amino acids from endogenous protein in the lumen of the small intestine.

Type
Papers of direct relevance to Clinical and Human Nutrition
Copyright
Copyright © The Nutrition Society 1975

References

Adibi, S. A. & Mercer, D. W. (1973). J. clin. Invest. 52, 1586.Google Scholar
Crampton, R. F., Gangolli, S. D., Simson, P. & Matthews, D. M. (1971). Clin. Sci. 41, 409.Google Scholar
Dawson, R., Holdsworth, E. S. & Porter, J. W. G. (1964). In The Role of the Gastro-intestinal Tract in Protein Metabolism, p. 293 [Munro, H. N, editor]Oxford: Blackwell Scientific Publications.Google Scholar
Dent, C. E. & Schilling, J. A. (1949). Biochem. J. 44, 318.Google Scholar
Elwyn, D. H., Parikh, H. C. & Shoemaker, W. C. (1968). Am. J. Physiol. 215, 1260.CrossRefGoogle Scholar
Feigin, R. D., Klainer, A. S. & Beisel, W. R. (1967). Nature, Lond. 215, 512.Google Scholar
Floyd, J. C., Fajans, S. S., Conn, J. W., Knopf, R. F. & Rull, J. (1966). J. clin. Invest. 45, 1479.Google Scholar
Frame, E. G. (1958). J. clin. Invest. 37, 1710.Google Scholar
Ganapathy, S. N. & Nasset, E. S. (1962). J. Nutr. 78, 241.CrossRefGoogle Scholar
Ling, E. R., Kon, S. K. & Porter, J. W. G. (1961). In The Mammary Gland and its Secretion, Vol. 2, p. 195 [Kon, S. K and Cowie, A. T. editors]New York and London: Academic Press.CrossRefGoogle Scholar
Longenecker, J. B. & Hause, N. L. (1959). Arch Biochem. Biophys. 84, 46.CrossRefGoogle Scholar
Matthews, D. M. (1975). In Peptide Transport in Protein Nutrition, p. 61 [Matthews, D. M and Payne, J. W., editors]Amsterdam: Associated Scientific Publishers.Google Scholar
Mercier, J. C., Grosclaude, F. & Ribadeau-Dumas, B. (1972). Milchwissenschaft 27, 402.Google Scholar
Miller, L. L. (1962). In Amino Acid Pools, p. 708 [Holden, J. T, editor]Amsterdam: Associated Scientific Publishers.Google Scholar
Nasset, E. S. (1964). Am J. dig. Dis. 9, 175.Google Scholar
Nasset, E. S. (1965). Fedn Proc. Fedn Am. Socs exp. Biol. 24, 953.Google Scholar
Nasset, E. S. & Ju, J. S. (1969). Proc. Soc. exp. Biol. Med. 132, 1077.CrossRefGoogle Scholar
Peraino, C. & Harper, A. E. (1963). J. Nutr. 80, 270.Google Scholar
Richmond, J. & Girdwood, R. H. (1962). Clin. Sci. 22, 301.Google Scholar
Rouser, G., Jelinek, B., Samuels, A. J. & Kinugasa, K. (1962). In Amino Acid Pools, p. 350 [Holden, J. T, editor]Amsterdam: Associated Scientific Publishers.Google Scholar
Seriver, C. R. & Rosenberg, L. E. (1973). Amino Acid Metabolism and its Disorders p. 39. Philadelphia and London: W. B. Saunders Co.Google Scholar
Silk, D. B. A., Clark, M. L., Marrs, T. C., Addison, J. M., Burston, D., Matthews, D. M. & Clegg, K. M. (1975). Br. J. Nutr. 33, 95.CrossRefGoogle Scholar
Silk, D. B. A,, Marrs, T. C., Addison, J. M., Burston, D., Clark, M. L. & Matthews, D. M. (1973). Clin. Sci. mol. Med. 45. 715.Google Scholar
Stein, W. H. & Moore, S. (1954). J. biol. Chem. 211, 915.CrossRefGoogle Scholar
Wiseman, G. (1974). In Biomembranes, Vol. 4A, p. 363 [Smyth, D. H, editor]London and New York: Plenum Press.Google Scholar
Wurtman, R. J., Chou, C. & Rose, C. M. (1967). Science, N. Y. 158, 660.CrossRefGoogle Scholar
Yearick, E. S. & Nadeau, R. G. (1967). Am. J. clin. Nutr. 20, 338.Google Scholar