Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-26T19:11:16.688Z Has data issue: false hasContentIssue false

Changes in bioavailability and tissue distribution of zinc caused by magnesium deficiency in rats

Published online by Cambridge University Press:  09 March 2007

Elena Planells
Affiliation:
Institute of Nutrition and Food Technology, University of Granada, E-18071 Grunada, Spain
Pilar Aranda
Affiliation:
Institute of Nutrition and Food Technology, University of Granada, E-18071 Grunada, Spain
Ana Lerma
Affiliation:
Department of Physiology, University of Granada, E-18071 Grunada, Spain
Juan Llopis
Affiliation:
Institute of Nutrition and Food Technology, University of Granada, E-18071 Grunada, Spain
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effect of a Mg-deficient diet (200 mg Mg/kg feed) on the bioavailability of dietary Zn and the concentration of this cation in plasma, whole blood, skeletal muscle, kidney, heart and brain of Wistar rats was studied after 7, 35, 42, 49, 56, 63 and 70 d. Mg deficiency significantly decreased Zn in whole blood on day 42 of the experiment, but there was no significant change in plasma Zn throughout the 70 d study period. The Mg-deficient diet significantly increased intestinal absorption of Zn, Zn balance, and Zn concentration in femur and kidney, but decreased Zn concentration in the heart despite the increase in dry weight of this organ. No change was found in brain Zn concentration.

Type
Effects of magnesium deficiency on zinc bioavailability
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Aitura, B. M. (1979). Sudden-death ischemic heart disease and dietary magnesium intake: is the target site coronary vascular smooth muscle? Medical Hypotheses 5, 843848.Google Scholar
Aranda, P., Lenna, A. & LLopis, J. (1989). Changes in erythrocyte membrane lipid structure during Mg- deficiency. Pflügers Archiv European Journal of Physiology 414, S13.Google Scholar
Aranda, P., Lopez-Frias, M., Lopez-Jurado, M., LLopis, J., Rivero, M. & Urbano, G. (1990). Recovery study in Mg-deficient rats given an organic source of Mg. Annals of Nutrition and Metabolism 34, 244251.CrossRefGoogle ScholarPubMed
Aranda, P., Lopez-Jurado, M., LLopis, J., Mataix, F. J. & Urbano, G. (1987). Nutritive utilition of Ca and Mg in Mg deficient rats. A recovery study. Journal of Nutritional Science and Vitaminology 33, 451459.CrossRefGoogle ScholarPubMed
Bunce, G. E. & King, G. A. (1978). Isolation and partial characterization of kidney stone matrix induced by magnesium deficiency in the rat. Experimental Molecular Pathology 28, 322325.CrossRefGoogle ScholarPubMed
Cassidy, M. M. & Tidball, C. S. (1967). Cellular mechanism of intestinal permeability: alterations produced by chelation depletion. Journal of Cell Biology 32, 685–498.CrossRefGoogle ScholarPubMed
Cousins, R. J. & Hempe, J. M. (1990). Zinc. In Present Knowledge in Nutrition, pp. 251260 [Brown, M. L., editor]. Washington DC: International Life Sciences Institute, Nutrition Foundation.Google Scholar
Disilvestro, R. A. & Cousins, R. J. (1983). Physiological ligands for copper and zinc. Annual Review of Nutrition 3, 261288.CrossRefGoogle ScholarPubMed
Fischer, P. W. F. & Giroux, A. (1984). Effect of magnesium deficiency on mineral excretion and concentration in rat serum, heart and kidney. Nutrition Research 4, 5157.CrossRefGoogle Scholar
Food and Agriculture Organization/World Health Organization (1966). Protein needs. Nutrition Meeting no. 37. Rome: WHO.Google Scholar
Forbes, R. M., Parker, H. M. & Erdman, J. W. Jr (1984). Effects of dietary phytate, calcium and magnesium levels on zinc bioavailability to rats. Journal of Nutrition 114, 14211425.CrossRefGoogle ScholarPubMed
Gunshin, H., Noguchi, T. & Naito, H. (1991). Effect of calcium on the zinc uptake by brush border membrane vesicles isolated from the rat small intestine. Agricultural and Biological Chemistry 55, 28132816.Google Scholar
Hempe, J. M. & Cousins, R. J. (1991). Cysteine-rich intestinal protein binds zinc during transmucosal zinc transport. Proceedings of the National Academy of Sciences USA 88, 96119674.CrossRefGoogle ScholarPubMed
Hempe, J. M. & Cousins, R. J. (1992). Cysteine-rich intestinal protein and intestinal metallothionein: An inverse relationship as a conceptual model for zinc absorption in rats. Journal of Nutrition 122, 8995.CrossRefGoogle ScholarPubMed
Hurley, L. S. & Cosens, L. L. (1976). Magnesium, calcium and zinc levels of maternal and fetal tissues in magnesium deficient rats. Journal of Nutrition 103, 12611264.CrossRefGoogle Scholar
Hurley, L. S. & Swenerton, H. J. (1966). Congenital malformations resulting from zinc deficiency in rats. Proceedings of the Society for Experimental Biology and Medicine 123, 692696.CrossRefGoogle ScholarPubMed
Kenney, M. A. (1981). Blood cells in the Mg-deficient rats related to bone magnesium. Nutrition Reports International 23, 455460.Google Scholar
Lemay, J. & Gascon-Barre, M. (1992). Responsiveness of the intestinal 1,25-dihydroxyvitamin-D3 receptor to Mg-depletion in the rat. Endocrinology 5, 2167–2117.Google Scholar
Lerma, A., Planells, E., Aranda, P. & LLopis, J. (1993). Evolution of Mg deficiency in rats. Annals of Nutrition and Metabolism 31, 210217.CrossRefGoogle Scholar
Lockard, V.G. & Bloom, S. (1991). Morphologic features and nuclide composition of infarction associated cardiac myocyte mineralization in humans. Journal of Pathology 139, 565572.Google ScholarPubMed
Momcilovic, B., Belonje, B., Giroux, A. & Shah, B. (1975). Total femur zinc as the parameter of choice for a zinc bioassay in rats. Nutrition Reports International 12, 197203.Google Scholar
Riggs, J. E., Klinberg, W. G., Flink, E. B. & Schochet, S. S. (1992). Cardioskeletal mitochondria1 myopathy associated with chronic Mg deficiency. Neurology 42, 128130.CrossRefGoogle Scholar
Smith, R. H. & McAllan, A. B. (1966). Binding of magnesium and calcium in the contents of the small intestine of the calf. British Journal of Nutrition 20, 103718.CrossRefGoogle ScholarPubMed
Solomons, W. N. (1988). Zinc and Copper. In Modern Nutrition in Health and Disease, pp. 238261 [Shils, M. E. and Young, V. R., editors]. Philadelphia: Lea and Febiger.Google Scholar
Wester, P. O. (1987). Magnesium. American Journal of Clinical Nutrition 45, 13051312.CrossRefGoogle ScholarPubMed
Yasui, M., Ota, K. & Garruto, R. M. (1991). Aluminium decreases the zinc concentration of soft tissues and bones of rats fed a low calcium-magnesium diet. Biological Trace Elements Research 31, 293304.CrossRefGoogle ScholarPubMed