Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-10T11:06:59.108Z Has data issue: false hasContentIssue false

Carbohydrate utilization in the pre-ruminant calf

Published online by Cambridge University Press:  09 March 2007

R. C. Siddons
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
R. H. Smith
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
M. J. Henschel
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
W. B. Hill
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
J. W. G. Porter
Affiliation:
National Institute for Research in Dairying, Shinfield, Reading
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Changes in blood sugar levels after giving carbohydrates have been used to assess carbohydrate utilization in pre-ruminant calves aged between 10 and 50 days.

2. Glucose, galactose and lactose were readily utilized by all calves; the utilization of glucose and galactose increased with age, whereas that of lactose remained constant.

3. Maltose and fructose utilization was low in young calves and increased slightly with age.

4. Sucrose and starch were not utilized.

5. Studies with three older pre-ruminant calves (aged 53, 88 and 106 days) in which the carbohydrates were infused into the proximal duodenum showed that glucose, galactose, lactose and xylose all caused marked increases in the level of blood reducing sugar, whereas fructose and sucrose caused no increase, and maltose was intermediate. Xylose and galactose caused very little change in the blood glucose concentration.

6. It appeared that preferential uptake occurred of glucose from a glucose-galactose mixture.

7. A non-linear relationship was found between the concentration of glucose or galactose infused and the increase in the level of blood reducing sugar.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1969

References

Cajori, C. F. (1926). Proc. Soc. exp. Biol. Med, 23, 290.Google Scholar
Chain, E. B., Mansford, K. R. L. & Pocchiari, F. (1960). J. Physiol., Lond. 154, 39.CrossRefGoogle Scholar
Conrad, H. R., Hibbs, J. W. & Pounden, W. D. (1954). J. Dairy Sci. 37, 664.Google Scholar
Dahlqvist, A. (1960). Biochem. J. 80, 547.CrossRefGoogle Scholar
Dollar, A. M. & Porter, J. W. G. (1957). Nature, Lond. 179, 1299.Google Scholar
Dollar, A. M. & Porter, J. W. G. (1959). Proc. int. Dairy Congr. xv. London. Vol. I, p. 185.Google Scholar
Fisher, R. B. & Parsons, D. S. (1953). J. Physiol., Lond. 119, 224.CrossRefGoogle Scholar
Flipse, R. J., Huffman, C. F., Duncan, C. W. & Webster, H. D. (1950). J. Dairy Sci. 33, 557.CrossRefGoogle Scholar
Forster, H. & Mehnert, H. (1965). Klin. Wschr. 43, 834.Google Scholar
Huber, J. T., Jacobson, N. L. & Allen, R. S. (1961). J. Dairy Sci. 44, 1494.Google Scholar
Huber, J. T., Jacobson, N. L., McGilliard, A. D. & Allen, R. S. (1961). J. Dairy Sci. 44, 321.CrossRefGoogle Scholar
Huber, J. T., Jacobson, N. L., McGilliard, A. D., Morrill, J. L. & Allen, R. S. (1961). J. Dairy Sci. 44, 1484.Google Scholar
Keller, P. J., Cohen, E. & Neurath, H. (1958). J. biol. Chem. 233, 344.Google Scholar
Kennedy, W. L., Anderson, A. K., Bechdel, S. I. & Shigley, J. F. (1939). J. Dairy Sci. 22, 251.Google Scholar
Kiyasu, J. Y. & Charkoff, I. L. (1957). J. biol. Chem. 224, 935.Google Scholar
Koldovský, O., Muzycenková, H., Hahn, P., Hennojová, A. & Jirsová, V. (1965). Can. J. Physiol. Pharmacol. 43, 469.Google Scholar
Larsen, H. J. & Stoddard, G. E. (1953). J. Dairy Sci. 36, 601.Google Scholar
Larsen, H. J., Stoddard, G. E., Jacobson, N. L. & Allen, R. S. (1956). J. Anim. Sci. 15, 473.CrossRefGoogle Scholar
McCandless, E. L. & Dye, J. A. (1950). Am. J. Physiol. 162, 434.Google Scholar
Miller, D. & Crane, R. K. (1961 a) Biochim. biophys. Acta 52, 281.Google Scholar
Miller, D. & Crane, R. K. (1961 b). Biochim. biophys. Acta 52, 293.Google Scholar
Nelson, N. (1944). J. biol. Chem. 153, 375.Google Scholar
Okamoto, M., Thomas, J. W. & Johnson, T. L. (1959). J. Dairy Sci. 42, 920.Google Scholar
Roy, J. H. B., Shillam, K. W. G., Hawkin, G. M. & Lang, J. M. (1958). Br. J. Nutr. 12, 123.Google Scholar
Siddons, R. C. (1968 a). Proc. Nutr. Soc. 27, 18A.Google Scholar
Siddons, R. C. (1968 b). Biochem. J. 108, 839.Google Scholar
Somogyi, M. (1952). J. biol. Chem. 195, 19.Google Scholar
Sterk, V. V. & Kretchmer, N. (1964). Pediatrics, Springfield 34, 609.Google Scholar
Velu, J. G., Kendall, K. A. & Gardner, K. E. (1960). J. Dairy Sci. 43, 546.Google Scholar
Warner, R. G., Bernholdt, H. F., Grippin, C. H. & Loosli, J. K. (1953). J. Dairy Sci. 36, 599.Google Scholar
Wilson, T. H. (1953). Biochim. biophys. Acta 11, 448.Google Scholar
Wilson, T. H. & Wiseman, G. (1954). J. Physiol., Lond. 123, 116.Google Scholar