Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-08T08:23:09.115Z Has data issue: false hasContentIssue false

Calcium absorption and bone utilization in spontaneously hypertensive rats fed on native and heat-damaged casein and soya-bean protein

Published online by Cambridge University Press:  09 March 2007

Yvonne V. Yuan
Affiliation:
Department of Food Science, Faculty of Agricultural Sciences, University of British Columbia, 6650 N.W. Marine Drive, Vancouver, B.C. V6T 124, Canada
David D. Kitts
Affiliation:
Department of Food Science, Faculty of Agricultural Sciences, University of British Columbia, 6650 N.W. Marine Drive, Vancouver, B.C. V6T 124, Canada
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The effects of dietary protein on Ca bioavailability and utilization in bone were examined in male spontaneously hypertensive rats (SHR) fed on diets containing either casein (200 g/kg (control), 60 g/kg or heat-damaged (HD) 200 g/kg) or soya-bean protein isolate (200 g/kg (control), 60 g/kg, or HD 200 g/kg). Casein was heat-damaged to limit caseinophosphopeptide (CPP) production in order to evaluate casein enhancement of Ca bioavailability. All diets contained an adequate level of Ca (5 g/kg). A 24 h mineral balance study was performed when animals were 10 weeks old, followed by measurement of in situ paracellular Ca disappearance, femur mineralization and biomechanics at 14 weeks of age. Digestibility of soya-bean and both HD proteins estimated in vitro was reduced compared with native casein. Animals fed on HD and 60 g/kg protein diets exhibited decreased (P < 0.05) body weight gain, dry matter intake and feed efficiency compared with controls. The ileal disappearance of 45Ca was lower (P < 0.05) in animals fed on HD casein and all the soya-bean protein diets. Ca balance was not strongly affected by dietary treatments. A significant (P < 0.05) interaction between protein source and reduced protein intake was observed for femur calcification and physical measurements. Femur bending failure energy and biomechanical force measurements were reduced (P < 0.05) in HD and 60 g/kg casein and soya-bean protein fed animals. These findings suggest that whole-body Ca homeostatic mechanisms were involved in compensating for reduced Ca bioavailability and retention from casein diets modified to reduce protein digestibility and CPP production.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1994

References

REFERENCES

Adams, P. & Berridge, F. R. (1969). Effects of kwashiorkor on cortical and trabecular bone. Archives of Discuse in Childhood 44, 705709.CrossRefGoogle ScholarPubMed
Agus, Z. S., Wasserstein, A. & Goldfarb, S. (1981). PTH, calcitonin, cyclic nucleotides, and the kidney. Annual Review of Physiology 41, 583595.CrossRefGoogle Scholar
Belec, J. & Jenness, R. (1962). Dephosphorylation of casein by heat treatment. II. In skimmilks. Journal of Dairy Science 45, 2026.CrossRefGoogle Scholar
Berrocdl, R., Chanton, S., Juillerat, M. A., Pavillard, B., Scherz, J. C. & Jost, R. (1989). Tryptic phosphopeptides from whole casein. II. Physicochemical properties related to the solubilization of calcium. Journal of Dairy Research 56, 335341.CrossRefGoogle Scholar
Brink, E. J., Dekker, P. R., Van Beresteijn, E. C. H. & Beynen, A. C. (1992). Bioavailability of magnesium and calcium from cow's milk and soya-bean beverage in rats. British Journal of Nutrition 68, 271282.CrossRefGoogle ScholarPubMed
Brommage, R., Juillerat, M. A. & Jost, R. (1991). Influence of casein phosphopeptides and lactulose on intestinal calcium absorption in adult female rats. Le Lait 71, 173180.CrossRefGoogle Scholar
Bruin, W. J., Baylink, D. J. & Wergedal, J. (1975). Acute inhibition of mineralization and stimulation of bone resorption mediated by hypophosphatemia. Endocrinology 96, 394399.CrossRefGoogle ScholarPubMed
Buchowski, M. S., Sowizral, K. C., Lengemann, F. W., Van Campen, D. & Miller, D. D. (1989). A comparison of intrinsic and extrinsic tracer methods for estimating calcium bioavailability in rats from dairy foods. Journal of Nutrition 119, 228234.CrossRefGoogle ScholarPubMed
Canadian Council on Animal Care (1984). Guide to the Care and Use of Experimental Animals, vol. 2. Ottawa, ON: Canadian Council on Animal Care.Google Scholar
Chen, P. S., Toribara, T. Y. & Warner, H. (1956). Microdetermination of phosphorus. Analytical Chemistry 28, 17561758.CrossRefGoogle Scholar
Crenshaw, T. D. (1986). Reliability of dietary Ca and P levels and bone mineral content as predictors of bone mechanical properties at various periods in growing swine. Journal of Nutrition 116, 21552170.CrossRefGoogle ScholarPubMed
Dawson-Hughes, B., Jacques, P. & Shipp, C. (1987). Dietary calcium intake and bone loss from the spine in healthy post menopausal women. American Journal of Clinical Nutrition 46, 685687.CrossRefGoogle Scholar
Garn, S. M., Rohmann, C. G., Behar, M., Viteri, F. & Guzman, M. A. (1964). Compact bone deficiency in protein-calorie malnutrition. Science 145, 14441445.CrossRefGoogle ScholarPubMed
Gerber, H. W. & Jost, R. (1986). Casein phosphopeptides: their effect in calcification of in vitro cultured embryonic rat bone. Calcified Tissue International 38, 350357.CrossRefGoogle ScholarPubMed
Green, G. M. & Lyman, R. L. (1972). Feedback regulation of pancreatic enzyme secretion as a mechanism for trypsin inhibitor induced hypersecretion in rats. Proceedings of the Society for Experimenta1 Biology and Medicine 140, 612.CrossRefGoogle ScholarPubMed
Heaney, R. P., Gallagher, J. C., Johnson, C. C., Neer, R., Parfitt, A. M. & Whedon, G. D. (1982). Calcium nutrition and bone health in the elderly. American Journal of Clinical Nutrition 36, 9861013.CrossRefGoogle ScholarPubMed
Howat, G. R. & Wright, N. C. (1934). The heat-coagulation of caseinogen. I. The role of phosphor cleavage. Biochemical Journal 28, 13361345.CrossRefGoogle Scholar
Itaya, K. & Ui, M. (1966). A new micromethod for the colorimetric determination of inorganic phosphate. Clinicrr Chimica Acta 14, 361366.CrossRefGoogle ScholarPubMed
Izawa, Y., Sagara, K., Kadota, T. & Makita, T. (1985). Bone disorders in spontaneously hypertensive rat. Calcifed Tissue Internationul 37, 605607.CrossRefGoogle ScholarPubMed
Jacques, H., Deshaies, Y. & Savoie, L. (1986). Relationship between dietary proteins, their in vitro digestion products and serum cholesterol in rats. Atherosclerosis 61, 8998.CrossRefGoogle ScholarPubMed
Jones, M. R., Martins, J. E. & Clemens, R. A. (1988). Mineral balance and blood pressure in the young spontaneously hypertensive rat. Journul of Nutrition 118, 114120.Google ScholarPubMed
Kanhai, J., Kitts, D. D. & Powrie, W. D. (1987). Temporal changes in serum cholesterol levels of rats fed casein and skim milk powdered diets. Journal of Food Science 52, 14101413.CrossRefGoogle Scholar
Kitts, D. D., Leung, R. & Nakai, S. (1991). Extrinsic labelling of caseinophosphopeptides with 45calcium and recovery following thermal treatment. Canadian Institute of Food Science and Technology Journal 24, 278282.CrossRefGoogle Scholar
Kitts, D. D., Yuan, Y. V., Nagasawa, T. & Moriyama, Y. (1992). Effect of casein, casein phosphopeptides and calcium intake on ileal 45Ca disappearance and temporal systolic blood pressure in spontaneously hypertensive rats. British Journal of Nutrition 68, 765781.CrossRefGoogle ScholarPubMed
Kwan, K. K. H., Nakai, S. & Skura, B. J. (1983). Comparison of four methods for determining protease activity in milk. Journal of Food Science 48, 14181421.CrossRefGoogle Scholar
Lafevre, M. & Schneeman, B. O. (1984). High density lipoprotein composition in rats fed casein and soy protein isolate. Journal of Nutrition 114, 768777.CrossRefGoogle Scholar
Lee, C. M., Chichester, C. O. & Lee, T.-C. (1977). Erect of Maillard reaction products on disaccharidase activities in the rat. Journal of Agricultural and Food Chemiitry 25, 775778.CrossRefGoogle Scholar
Lee, Y. S., Noguchi, T. & Naito, H. (1980). Phosphopeptides and soluble calcium in the small intestine of rats given a casein diet. British Journal of Nutrition 43, 457467.CrossRefGoogle Scholar
Liebman, M. & Landis, W. (1989). Calcium and zinc balances of premenopausal women consuming tofucompared to cheese-containing diets. Nutrition Research 9, 514.CrossRefGoogle Scholar
Maga, J. A., Lorenz, K. & Onayemi, O. (1973). Digestive acceptability of proteins as measured by the initial rate of in vitro proteolysis. Journal of Food Science 38, 173174.CrossRefGoogle Scholar
Malawer, S. J. & Powell, D. W. (1967). An improved turbidometric analysis of polyethylene glycol utilizing an emulsifier. Gasrroenferology 53, 250256.CrossRefGoogle Scholar
Markwell, M. A., Hans, S. M., Bieber, L. L. & Tolbert, N. E. (1978). A modification of the Lowry procedure to simplify protein determination in membrane and lipoprotein samples. Analytical Biochemistry 87, 206210.CrossRefGoogle ScholarPubMed
Mauer, J. (1977). Extraction method for the simultaneous determination of Na, K, Ca, Mg, Fe, Cu, Zn, and Mn in organic material using atomic absorption spectrophotometry. Zeitschrift fur Lebensmittel Unrersuchung und Forschung 165, 14.Google Scholar
Mauron, J. (1972). Influence of industrial and household handling on food protein quality. In Protein and Amino Acid Functions, pp. 417474 [Bigwood, E. J., editor]. Oxford: Pergamon Press.Google Scholar
Meisel, H. & Frister, H. (1989). Chemical characterization of bioactive peptides from in vivo digests of casein. Journal of Dairy Research 56, 343349.CrossRefGoogle ScholarPubMed
Mellander, O.. (1950). The physiological importance of the casein phosphopeptide calcium salts. II. Peroral calcium dosage of infants. Acta Socieiatis Medicorum Upsaliensis 55, 247255.Google ScholarPubMed
Mellander, O. & Olsson, N. (1956). The influence of peptide bound calcium and phosphorus in bone calcification in rickets. Biologica Medicus Del Hospital De Mexico 13, 243246.Google ScholarPubMed
Mykkanen, H. M. & Wassennan, R. H. (1980). Enhanced absorption of calcium by casein phosphopeptides in rachitic and normal chicks. Journal of Nutrition 110, 21412148.CrossRefGoogle ScholarPubMed
Nagasawa, T., Yuan, Y. V. & Kitts, D. D. (1991). Casein phosphopeptides enhance paracellular calcium absorption but do not alter temporal blood pressure in normotensive rats. Nutrition Research 11, 819830.CrossRefGoogle Scholar
Naito, H., Kawakami, A. & Imamura, T. (1972). In vivo formation of phosphopeptide with calcium-binding property in the small intestinal tract of the rat fed on casein. Agricultural and Biological Chemistry 36, 409415.CrossRefGoogle Scholar
Naito, H. & Suzuki, H. (1974). Further evidence for the formation in vivo of phosphopeptides in the intestinal lumen from β−casein. Agricultural and Biological Chemistry 38, 15431545.CrossRefGoogle Scholar
Orwoll, E., Ware, M., Stibrska, L., Bilke, D., Sanchez, T., Andon, M. & Li, H. (1992). Effects of dietary protein deficiency on mineral metabolism and bone mineral density. American Journal of CIinica1 Nutrition 56, 314319.Google ScholarPubMed
Pappas, C. P. & Rothwell, J. (1991). The effects of heating, alone or in the presence of calcium or lactose, on calcium binding to milk proteins. Food Chemistry 42, 183201.CrossRefGoogle Scholar
Percival, S. S. & Schneeman, B. O. (1979). Long term pancreatic response to feeding heat damaged casein in rats. Journal of Nutrition 109, 16091614.CrossRefGoogle ScholarPubMed
Rader, J. I., Baylink, D. J.Hughes, M. R., Safilian, E. F. & Haussler, M. R. (1979). Calcium and phosphorus deficiency in rats: effects on PTH and 1,25-dihydroxyvitamin D3. American Journal of Physiology 236, E118–E122.Google Scholar
Reeves, R. E. & Latour, N. G. (1958). Calcium phosphate sequestering phosphopeptide from casein. Science 128, 472.CrossRefGoogle ScholarPubMed
Robbins, R. C. (1978). Effect of ratio of enzymes to substrate on amino acid patterns released from protein in vitro. International Journa1, for Vitamin and Nutrition Research 48, 4453.Google Scholar
Sato, R., Noguchi, T. & Naito, H (1983 a). Effect of lactose on calcium absorption from the rat small intestine and a non-flushed ligated loop. Journal of Nutritional Science and Vitaminology 29, 365373.CrossRefGoogle Scholar
Sato, R., Noguchi, T. & Naito, H. (1983 b). The necessity for the phosphate portion of casein molecules to enhance calcium absorption from the small intestine. Agricultural and Biological Chemistry 47, 24152417.Google Scholar
Sato, R., Noguchi, T. & Naito, H. (1986). Casein phosphopeptide (CPP) enhances calcium absorption from the ligated segment of rat small intestine. Journal of Nutritional Science and Vitaminology 32, 6776.CrossRefGoogle ScholarPubMed
Shah, B. G., Belonje, B. & Paquet, A. (1990). The lack of effect of synthetic phosphoseryl peptide on calcium absorption by the rat. Nurrition Research 10, 13311336.CrossRefGoogle Scholar
Shortt, C. & Flynn, A. (1991). Effect of dietary lactose on salt-mediated changes in mineral metabolism and bone composition in the rat. British Journal of Nutrition 66. 7381.CrossRefGoogle ScholarPubMed
Wasserman, R. H. & Taylor, A. N. (1976). Gastrointestinal absorption of calcium and phosphorus. In Handbook of Physiology, vol. 7, pp. 137155 [Greep, R. O. and Astwood, E. B., editors]. Washington, DC: American Physiological Society.Google Scholar
Yuan, Y. V. & Kitts, D. D. (1991). Confirmation of calcium absorption and femoral utilization in spontaneously hypertensive rats fed casein phosphopeptide supplemented diets. Nutrition Research 11, 12571272.CrossRefGoogle Scholar
Yuan, Y. V. & Kitts, D. D. (1992 a). Effect of dietary calcium intake and protein source on calcium utilization and bone biomechanics in the spontaneously hypertensive rat. Journal of Nutritional Biochemistry 3, 452460.CrossRefGoogle Scholar
Yuan, Y. V. & Kitts, D. D. (1992 b). Estimation of dietary calcium utilization in rats using a biomechanical functional test. Food Chemistry 44, 17.CrossRefGoogle Scholar
Yuan, Y. V., Kitts, D. D. & Nagasawa, T. (1991). The effect of lactose and fermentation products on paracellular calcium absorption and femur biomechanics in rats. Canadian Institute of Food Science and Technology Journul 24, 7480.Google Scholar
Yvon, M. & Pelissier, J. P. (1987). Characterization and kinetics of evacuation of peptides resulting from casein hydrolysis in the stomach of the calf. Journal of Agricultural and Food Chemistry 35, 148156.CrossRefGoogle Scholar
Zemel, M. B. (1988). Calcium utilization: effect of varying level and source of dietary protein. American Journal of Clinical Nutrition 48, 880883.CrossRefGoogle ScholarPubMed