Hostname: page-component-745bb68f8f-cphqk Total loading time: 0 Render date: 2025-01-22T08:53:21.732Z Has data issue: false hasContentIssue false

C18unsaturated fatty acid hydrogenation patterns of some rumen bacteria and their ability to hydrolyse exogenous phospholipid

Published online by Cambridge University Press:  25 March 2008

G. P. Hazlewood
Affiliation:
Biochemistry Department, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 44T
P. Kemp
Affiliation:
Biochemistry Department, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 44T
D. Lander
Affiliation:
Biochemistry Department, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 44T
R. M. C. Dawson
Affiliation:
Biochemistry Department, ARC Institute of Animal Physiology, Babraham, Cambridge CB2 44T
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. A number of rumen bacteria isolated because of their ability to deacylate phosphatidyl-choline, were found, in addition, to hydrogenate polyunsaturated fatty acids..

2. The most active lipolytic organisms had an unusual pattern of hydrogenation of dietary fatty acids in that α-linolenic acid was hydrogenated only as far as trans-11,cis-15-octadeca-dienoic acid.

Type
Short Paper
Copyright
Copyright © The Nutrition Society 1976

References

Bickerstaffe, R., Noakes, D. E. & Annison, E. F. (1972). Biochem. J. 130, 607.CrossRefGoogle Scholar
Bryant, M. P. & Robinson, I. M. (1961). J. Dairy Sci. 4, 1446.CrossRefGoogle Scholar
Dawson, R. M. C., Hemington, N., Grime, D., Lander, D. & Kemp, P. (1974). Biochem. J. 144, 169.CrossRefGoogle Scholar
Dawson, R. M. C. & Kemp, P. (1970). In Physiology of Digestion and Metabolism in the Ruminant, p. 504 [Phillipson, A. T., editor]. Newcastle upon Tyne: Oriel Press.Google Scholar
Garton, G. A. (1964). In Metabolism and Physiological Significance of Lipids, p. 335 [Dawson, R. M. C.and Rhodes, D. N., editors]. London: John Wiley & Sons.Google Scholar
Harfoot, C. G., Noble, R. C. & Moore, J. H. (1973). Biochem. J. 132, 829.CrossRefGoogle Scholar
Hazlewood, G. P. & Dawson, R. M. C. (1975). J. gen. Microbiol. 89, 163.CrossRefGoogle Scholar
Hobson, P. N. & Mann, S. O. (1971). In Isolation of Anaerobes. Society for Applied Bacteriology, Technical Series 5, p. 149 [Shapton, D. A. and Board, R. G., editors]. London and New York: Academic Press.Google Scholar
Kemp, P. & Dawson, R. M. C. (1968). Biochem. J. 109, 477.CrossRefGoogle Scholar
Kemp, P., White, R. W. & Lander, D. J. (1975). J. gen. Microbiol. 90, 100.CrossRefGoogle Scholar
Kepler, C. R., Hirons, K. P., McNiell, J. J. & Tove, S. B. (1966). J. biol. Chem. 241, 1350.CrossRefGoogle Scholar
Kepler, C. R., Tucker, W. P. & Tove, S. B. (1971). J. biol. Chem. 246, 2765.CrossRefGoogle Scholar
Latham, M. J. & Sharpe, E. M. (1971). In Isolation of Anaerobes. Society for Applied Bacteriology, Technical series 5, p. 133 [Shapton, D. A. and Board, R. G., editors]. London and New York: Academic Press.Google Scholar
Mortimer, C. E. & Niehaus, W. G. (1974). J. biol. Chem. 249, 2833.CrossRefGoogle Scholar
White, R. W., Kemp, P. & Dawson, R. M. C. (1970). Biochem. J. 116, 767.CrossRefGoogle Scholar