Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-22T19:46:57.311Z Has data issue: false hasContentIssue false

Brussels sprouts, inulin and fermented milk alter the faecal microbiota of human microbiota-associated rats as shown by PCR-temporal temperature gradient gel electrophoresis using universal, Lactobacillus and Bifidobacterium 16S rRNA gene primers

Published online by Cambridge University Press:  08 March 2007

Christèle Humblot
Affiliation:
National Institute for Agronomic Research (INRA), Unit on Ecology and Physiology of the Digestive Tract (UEPSD), 78352, Jouy-en-Josas Cedex, France
Aurélia Bruneau
Affiliation:
National Institute for Agronomic Research (INRA), Unit on Ecology and Physiology of the Digestive Tract (UEPSD), 78352, Jouy-en-Josas Cedex, France
Malène Sutren
Affiliation:
National Institute for Agronomic Research (INRA), Unit on Ecology and Physiology of the Digestive Tract (UEPSD), 78352, Jouy-en-Josas Cedex, France
Evelyne F. Lhoste
Affiliation:
National Institute for Agronomic Research (INRA), Unit on Ecology and Physiology of the Digestive Tract (UEPSD), 78352, Jouy-en-Josas Cedex, France
Joël Doré
Affiliation:
National Institute for Agronomic Research (INRA), Unit on Ecology and Physiology of the Digestive Tract (UEPSD), 78352, Jouy-en-Josas Cedex, France
Claude Andrieux
Affiliation:
National Institute for Agronomic Research (INRA), Unit on Ecology and Physiology of the Digestive Tract (UEPSD), 78352, Jouy-en-Josas Cedex, France
Sylvie Rabot*
Affiliation:
National Institute for Agronomic Research (INRA), Unit on Ecology and Physiology of the Digestive Tract (UEPSD), 78352, Jouy-en-Josas Cedex, France
*
*Corresponding author: Dr Sylvie Rabot, fax +33 1 34 65 24 62, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

We investigated the effect of Brussels sprouts, inulin and a fermented milk on the faecal microbiota diversity of human microbiota-associated (HMA) rats by PCR-temporal temperature gradient gel electrophoresis (PCR-TTGE) using universal and group-specific 16S rRNA gene primers. The HMA rats were submitted to a control diet for 10 d (initial time), then switched to the experimental diets for 4 weeks (final time). Using universal primers, the mean degree of similarity between all faecal samples at initial time was 80·8 %. In the group consuming the control diet throughout the experiment, the mean degree of similarity between the PCR-TTGE profiles at initial v. final time was 76·8 %, reflecting a spontaneous temporal variation. The mean degree of similarity between control and experimental groups at final time was lower, 72·4 %, 74·4 % and 75·6 % for inulin, Brussels sprouts and fermented milk, respectively, indicating a dietary effect on the predominant populations. Using specific primers, bifidobacteria could be detected only in those rats that had consumed inulin, showing a specific increasing effect of this dietary compound. The Lactobacillus population was very heterogeneous at initial time but tended to homogenize within each dietary group. At final time, caecal contents were collected for analysis of SCFA and β-glucuronidase activity. Inulin and Brussels sprouts increased the butyrate and acetate proportion, respectively, while the fermented milk did not modify the caecal biochemistry. This experiment shows for the first time that cruciferous vegetables are able to alter the diversity and the metabolic activities of the digestive microbiota in HMA rats.

Type
Research Article
Copyright
Copyright © The Nutrition Society 2005

References

Amann, RI, Ludwig, W & Schleifer, KH (1995) Phylogenetic identification and in situ detection of individual microbial cells without cultivation. Microbiol Rev 59, 143169.CrossRefGoogle ScholarPubMed
Andrieux, C, Hibert, A, Houari, AM, Bensaada, M, Popot, F & Szylit, O (1998) Ulva lactuca is poorly fermented but alters bacterial metabolism in rats inoculated with human faecal flora from methane and non-methane producers. J Sci Food Agric 77, 2530.3.0.CO;2-C>CrossRefGoogle Scholar
Andrieux, C, Lory, S, Dufour-Lescoat, C, de Baynast, R & Szylit, O (1991) Physiological effects of inulin in germ-free rats and in heteroxenic rats inoculated with a human flora. Food Hydrocolloids 5, 4956.CrossRefGoogle Scholar
Avivi-Green, C, Polak-Charcon, S, Madar, Z & Schwartz, B (2002) Different molecular events account for butyrate-induced apoptosis in two human colon cancer cell lines. J Nutr 132, 18121818.CrossRefGoogle ScholarPubMed
Campbell, JM, Fahey, GC Jr & Wolf, BW (1997) Selected indigestible oligosaccharides affect large bowel mass, cecal and fecal short-chain fatty acids, pH and microflora in rats. J Nutr 127, 130136.CrossRefGoogle ScholarPubMed
Cummings, JH & MacFarlane, GT (2002) Gastrointestinal effects of prebiotics. Br J Nutr 87 Suppl. 2S145S151.CrossRefGoogle ScholarPubMed
Djouzi, Z & Andrieux, C (1997) Compared effects of three oligosaccharides on metabolism of intestinal microflora in rats inoculated with a human faecal flora. Br J Nutr 78, 313324.CrossRefGoogle ScholarPubMed
Djouzi, Z, Andrieux, C, Degivry, MC, Bouley, C & Szylit, O (1997) The association of yogurt starters with Lactobacillus casei DN 114.001 in fermented milk alters the composition and metabolism of intestinal microflora in germ-free rats and in human flora-associated rats. J Nutr 127, 22602266.CrossRefGoogle ScholarPubMed
Felton, JS, Knize, MG, Salmon, CP, Malfatti, MA & Kulp, KS (2002) Human exposure to heterocyclic amine food mutagens/carcinogens: relevance to breast cancer. Environ Mol Mutagen 39, 112118.CrossRefGoogle ScholarPubMed
Gérard, P, Béguet, F, Lepercq, P, Rigottier-Gois, L, Rochet, V, Andrieux, C & Juste, C (2004) Gnotobiotic rats, harboring human intestinal microbiota as a model for studying cholesterol-to-coprostanol conversion. FEMS Microbiol Ecol 47, 337343.CrossRefGoogle Scholar
Godon, JJ, Zumstein, E, Dabert, P, Habouzit, F & Moletta, R (1997) Molecular microbial diversity of an anaerobic digestor as determined by small-subunit rDNA sequence analysis. Appl Environ Microbiol 63, 28022813.CrossRefGoogle ScholarPubMed
Guérin-Danan, C, Chabanet, C, Pedone, C, Popot, F, Vaissade, P, Bouley, C, Szylit, O & Andrieux, C (1998) Milk fermented with yogurt cultures and Lactobacillus casei compared with yogurt and gelled milk: influence on intestinal microflora in healthy infants. Am J Clin Nutr 67, 111117.CrossRefGoogle ScholarPubMed
Hughes, R & Rowland, IR (2001) Stimulation of apoptosis by two prebiotic chicory fructans in the rat colon. Carcinogenesis 22, 4347.CrossRefGoogle ScholarPubMed
Humblot, C, Lhoste, EF, Knasmuller, S, Gloux, K, Bruneau, A, Bensaada, M, Durao, J, Rabot, S, Andrieux, C & Kassie, F (2004) Protective effect of Brussels sprouts, prebiotics and fermented milk towards IQ-induced genotoxicity in the human flora-associated F344 rat: role of xenobiotic metabolizing enzymes and intestinal microflora. J Chromatogr B Analyt Technol Biomed Life Sci 802, 231237.CrossRefGoogle Scholar
Imaoka, A, Setoyama, H, Takagi, A, Matsumoto, S & Umesaki, Y (2004) Improvement of human faecal flora-associated mouse model for evaluation of the functional foods. J Appl Microbiol 96, 656663.CrossRefGoogle ScholarPubMed
Johnson, IT (2002) Glucosinolates: bioavailability and importance to health. Int J Vitam Nutr Res 72, 2631.CrossRefGoogle ScholarPubMed
Kassie, F, Lhoste, EF, Bruneau, A, Zsivkovits, M, Ferk, F, Uhl, M, Zidek, T & Knasmuller, S (2004) Effect of intestinal microfloras from vegetarians and meat eaters on the genotoxicity of 2-amino-3-methylimidazo[4,5-f]quinoline, a carcinogenic heterocyclic amine. J Chromatogr B Analyt Technol Biomed Life Sci 802, 211215.CrossRefGoogle Scholar
Kassie, F, Rabot, S, Kundi, M, Chabicovsky, M, Qin, HM & Knasmüller, S (2001) Intestinal microflora plays a crucial role in the genotoxicity of the cooked food mutagen 2-amino-3-methylimidazo[4,5-f]quinoline. Carcinogenesis 22, 17211725.CrossRefGoogle Scholar
Kassie, F, Rabot, S, Uhl, M, Huber, W, Qin, HM, Helma, C, Schulte-Hermann, R & Knasmüller, S (2002) Chemoprotective effects of garden cress ( Lepidium sativum ) and its constituents towards 2-amino-3-methyl-imidazo[4,5-f]quinoline (IQ)-induced genotoxic effects and colonic preneoplastic lesions. Carcinogenesis 23, 11551161.CrossRefGoogle ScholarPubMed
Kassie, F, Uhl, M, Rabot, S, Grasl-Kraupp, B, Verkerk, R, Kundi, M, Chabicovsky, M, Schulte-Hermann, R & Knasmuller, S (2003) Chemoprevention of 2-amino-3-methylimidazo[4,5-f]quinoline (IQ)-induced colonic and hepatic preneoplastic lesions in the F344 rat by cruciferous vegetables administered simultaneously with the carcinogen. Carcinogenesis 24, 255261.CrossRefGoogle Scholar
Kimura, K, McCartney, AL, McConnell, MA & Tannock, GW (1997) Analysis of fecal populations of bifidobacteria and lactobacilli and investigation of the immunological responses of their human hosts to the predominant strains. Appl Environ Microbiol 63, 33943398.CrossRefGoogle Scholar
Kleessen, B, Hartmann, L & Blaut, M (2001) Oligofructose and long-chain inulin: influence on the gut microbial ecology of rats associated with a human faecal flora. Br J Nutr 86, 291300.CrossRefGoogle ScholarPubMed
Knasmüller, S, Steinkellner, H, Hirschl, AM, Rabot, S, Nobis, EC & Kassie, F (2001) Impact of bacteria in dairy products and of the intestinal microflora on the genotoxic and carcinogenic effects of heterocyclic aromatic amines. Mutat Res 480–481129138.CrossRefGoogle ScholarPubMed
Krul, C, Humblot, C, Philippe, C, Vermeulen, M, van Nuenen, M, Havenaar, R & Rabot, S (2002) Metabolism of sinigrin (2-propenyl glucosinolate) by the human colonic microflora in a dynamic in vitro large-intestinal model. Carcinogenesis 23, 10091016.CrossRefGoogle Scholar
Lankaputhra, WE & Shah, NP (1998) Antimutagenic properties of probiotic bacteria and of organic acids. Mutat Res 397, 169182.CrossRefGoogle ScholarPubMed
Lhoste, EF, Ouriet, V, Bruel, S, Flinois, JP, Brézillon, C, Magdalou, J, Chèze, C, Nugon-Baudon, L (2003) The human colonic microflora influences the alterations of xenobiotic-metabolizing enzymes by catechins in male F344 rats. Food Chem Toxicol 41, 695702.CrossRefGoogle ScholarPubMed
Muyzer, G, de Waal, EC & Uitterlinden, AG (1993) Profiling of complex microbial populations by denaturing gradient gel electrophoresis analysis of polymerase chain reaction-amplified genes coding for 16S rRNA. Appl Environ Microbiol 59, 695700.CrossRefGoogle Scholar
Muyzer, G & Smalla, K (1998) Application of denaturing gradient gel electrophoresis (DGGE) and temperature gradient gel electrophoresis (TGGE) in microbial ecology. Antonie Van Leeuwenhoek 73, 127141.CrossRefGoogle Scholar
Orrhage, K, Sillerstrom, E, Gustafsson, JA, Nord, CE & Rafter, J (1994) Binding of mutagenic heterocyclic amines by intestinal and lactic acid bacteria. Mutat Res 311, 239248.CrossRefGoogle ScholarPubMed
Rabot, S, Szylit, O, Nugon-Baudon, L, Meslin, JC, Vaissade, P, Popot, F & Viso, M (2000) Variations in digestive physiology of rats after short duration flights aboard the US space shuttle. Dig Dis Sci 45, 16871695.CrossRefGoogle ScholarPubMed
Reddy, BS & Rivenson, A (1993) Inhibitory effect of Bifidobacterium longum on colon, mammary, and liver carcinogenesis induced by 2-amino-3-methylimidazo[4,5-f]quinoline, a food mutagen. Cancer Res 53, 39143918.Google Scholar
Roberfroid, MB (2001) Prebiotics: preferential substrates for specific germs? Am J Clin Nutr 73 406S – 409SCrossRefGoogle ScholarPubMed
Roland, N, Rabot, S, Nugon-Baudon, L (1996) Modulation of the biological effects of glucosinolates by inulin and oat fibre in gnotobiotic rats inoculated with a human whole faecal flora. Food Chem Toxicol 34, 671677.CrossRefGoogle ScholarPubMed
Rouzaud, G, Rabot, S, Ratcliffe, B & Duncan, AJ (2003) Influence of plant and bacterial myrosinase activity on the metabolic fate of glucosinolates in gnotobiotic rats. Br J Nutr 90, 395404.CrossRefGoogle ScholarPubMed
Rowland, IR, Rumney, CJ, Coutts, JT & Lievense, LC (1998) Effect of Bifidobacterium longum and inulin on gut bacterial metabolism and carcinogen-induced aberrant crypt foci in rats. Carcinogenesis 19, 281285.CrossRefGoogle ScholarPubMed
Satokari, RM, Vaughan, EE, Akkermans, AD, Saarela, M & de Vos, WM (2001) Bifidobacterial diversity in human feces detected by genus-specific PCR and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67, 504513.CrossRefGoogle ScholarPubMed
Schwab, CE, Huber, WW, Parzefall, W, Hietsch, G, Kassie, F, Schulte-Hermann, R & Knasmüller, S (2000) Search for compounds that inhibit the genotoxic and carcinogenic effects of heterocyclic aromatic amines. Crit Rev Toxicol 30, 169.CrossRefGoogle ScholarPubMed
Seksik, P, Rigottier-Gois, L, Gramet, G, Sutren, M, Pochart, P, Marteau, P, Jian, R & Doré, J (2003) Alterations of the dominant faecal bacterial groups in patients with Crohn's disease of the colon. Gut 52, 237242.CrossRefGoogle ScholarPubMed
Suau, A, Bonnet, R, Sutren, M, Godon, JJ, Gibson, GR, Collins, MD & Doré, J (1999) Direct analysis of genes encoding 16S rRNA from complex communities reveals many novel molecular species within the human gut. Appl Environ Microbiol 65, 47994807.CrossRefGoogle ScholarPubMed
Tannock, GW (2001) Molecular assessment of intestinal microflora. Am J Clin Nutr 73 410S – 414SCrossRefGoogle ScholarPubMed
Tannock, GW, Munro, K, Harmsen, HJ, Welling, GW, Smart, J & Gopal, PK (2000) Analysis of the fecal microflora of human subjects consuming a probiotic product containing Lactobacillus rhamnosus DR20. Appl Environ Microbiol 66, 25782588.CrossRefGoogle ScholarPubMed
Tavan, E, Cayuela, C, Antoine, JM, Trugnan, G, Chaugier, C & Cassand, P (2002) Effects of dairy products on heterocyclic aromatic amine-induced rat colon carcinogenesis. Carcinogenesis 23, 477483.CrossRefGoogle ScholarPubMed
Vanhoutte, T, Huys, G, De Brandt, E & Swings, J (2004) Temporal stability analysis of the microbiota in human feces by denaturing gradient gel electrophoresis using universal and group-specific 16S rRNA gene primers. FEMS Microbiol Ecol 48, 437446.CrossRefGoogle ScholarPubMed
Vaughan, EE, Schut, F, Heilig, HG, Zoetendal, EG, de Vos, WM & Akkermans, AD (2000) A molecular view of the intestinal ecosystem. Curr Issues Intest Microbiol 1, 112.Google ScholarPubMed
Walter, J, Hertel, C, Tannock, GW, Lis, CM, Munro, K & Hammes, WP (2001) Detection of Lactobacillus, Pediococcus, Leuconostoc, and Weissella species in human feces by using group-specific PCR primers and denaturing gradient gel electrophoresis. Appl Environ Microbiol 67, 25782585.CrossRefGoogle ScholarPubMed
Zhang, XB & Ohta, Y (1993) Antimutagenicity of cell fractions of microorganisms on potent mutagenic pyrolysates. Mutat Res 298, 247253.CrossRefGoogle ScholarPubMed
Zoetendal, EG, Akkermans, ADL, Akkermans-van, Vliet, WM, Visser & JAGMd, Vos WMd (2001) The host genotype affects the bacterial community in the human gastrointestinal tract. Microb Ecol Health Dis 13, 129134.Google Scholar
Zoetendal, EG, Akkermans, AD & De Vos, WM (1998) Temperature gradient gel electrophoresis analysis of 16S rRNA from human fecal samples reveals stable and host-specific communities of active bacteria. Appl Environ Microbiol 64, 38543859.CrossRefGoogle ScholarPubMed
Zsivkovits, M, Fekadu, K, Sontag, G, Nabinger, U, Huber, WW, Kundi, M, Chakraborty, A, Foissy, H & Knasmuller, S (2003) Prevention of heterocyclic amine-induced DNA damage in colon and liver of rats by different lactobacillus strains. Carcinogenesis 24, 19131918.CrossRefGoogle ScholarPubMed