Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-23T03:55:47.907Z Has data issue: false hasContentIssue false

Body composition assessment in lean and normal-weight young women

Published online by Cambridge University Press:  09 March 2007

G. Mikael Fogelholm
Affiliation:
UKK Institute for Health Promotion Research, PO Box 30, FIN-33501 Tampere, Finland
T. Katriina Kukkonen-Harjula
Affiliation:
UKK Institute for Health Promotion Research, PO Box 30, FIN-33501 Tampere, Finland
Harri T. Sievänen
Affiliation:
UKK Institute for Health Promotion Research, PO Box 30, FIN-33501 Tampere, Finland
Pekka Oja
Affiliation:
UKK Institute for Health Promotion Research, PO Box 30, FIN-33501 Tampere, Finland
Ilkka M. Vuori
Affiliation:
UKK Institute for Health Promotion Research, PO Box 30, FIN-33501 Tampere, Finland
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

Using percentage body fat (BF%) from a three-compartment (3C) model (body density from underwater weighing (UWW) and bone-mineral mass from dual-energy X-ray absorptiometry (DXA)) as a criterion, we studied the accuracy of UWW, DXA, two skinfold equations, and two bioimpedance (BIA) equations. Thirty-four women (aged 16–20 years) with BF% 13·5–31·1 volunteered. UWW underestimated BF% by −0·5 BF% (95 % CI: −1·0; −0·02), whereas DXA overestimated it by 7·3 BF% (95% CI5.8;8·8). Skinfolds underestimated and BIA overpredicted BF%. The differences between 3C and UWW, skinfolds (Durnin & Womersley, 1974) and BIA (Deurenberg et al. 1990) were dependent (range of r values: −0.63 to −0.79; P < 0·0001) on BF%, causing an overestimation of lean subjects' (UWW, BIA) or an underestimation of normal-weight subjects' (UWW, skinfolds) BF%. The 3C model and UWW gave comparable body-composition results for healthy young women with BF% of approximately 20–25. Based on a significant mean difference from the 3C model, and a large standard error of the estimate, we do not regard DXA as superior to skinfolds or BIA to assess BF%.

Type
Body composition assessment
Copyright
Copyright © The Nutrition Society 1996

References

REFERENCES

Altman, D. G. & Bland, J. M. (1983). Measurement in medicine: the analysis of method comparison studies. Statistician 32, 307317.CrossRefGoogle Scholar
Brozek, J., Grande, F., Anderson, J. T. & Kemp, A. (1963). Densitometric analysis of body composition: revision of some quantitative assumptions. Annals of the New York Academy of Sciences 110, 113140.CrossRefGoogle ScholarPubMed
Bunt, J. C., Going, S. C., Lohman, T. G., Heinrich, C. H., Perry, C. D. & Pamenter, R. W. (1990). Variation in bone mineral content and estimated body fat in young adult females. Medicine and Science in Sports and Exercise 22, 564569.CrossRefGoogle ScholarPubMed
Clark, R. R., Kuta, J. M. & Sullivan, J. C. (1993). Prediction of percent body fat in adult males using dual energy X-ray absorptiometry, skinfolds, and hydrostatic weighing. Medicine and Science in Sports and Exercise 25, 528535.Google ScholarPubMed
Deurenberg, P., Kusters, C. S. L. & Smith, H. E. (1990). Assessment of body composition by bioelectrical impedance in children and young adults is strongly age-dependent. European Journal of Clinical Nutrition 44, 261268.Google Scholar
Durnin, J. V. G. A. & Womersley, J. (1974). Body fat assessed from total body density and its estimation from skinfold thickness: measurements on 481 men and women aged from 16 to 72 years. British Journalof Nutrition 32, 7797.CrossRefGoogle ScholarPubMed
Eaton, A. W., Israel, R. G., O'Brien, K. F., Hortobagyi, T. & McCammon, M. R. (1993). Comparison of four methods to assess body composition in women. European Journal of Clinical Nutrition 47, 353360.Google ScholarPubMed
Friedl, K. E., DeLuca, J. P., Marchitelli, L. J. & Vogel, J. A. (1992). Reliability of body-fat estimations from a four-compartment model by using density, body water, and bone mineral measurements. American Journal of Clinical Nutrition 55, 764770.CrossRefGoogle ScholarPubMed
Gardner, M. J. & Altman, D. B. (1989). Statistics With Confidence – Confidence Intervals and Statistical Guidelines. London: British Medical Journal Publications.Google Scholar
Graves, J. E., Pollock, M. L. & Sparling, P. B. (1987). Body composition of elite female runners. International Journal of Sports Medicine 8, 96102.CrossRefGoogle Scholar
Gray, D. S., Bray, G. A., Bauer, M., Kaplan, K., Gemayel, N., Wood, R., Greenway, F. & Kirk, S. (1990). Skinfold thickness measurements in obese subjects. American Journal of Clinical Nutrition 51, 571577.CrossRefGoogle ScholarPubMed
Harrison, G. G., Buskirk, E. R., Carter, J. E. L., Johnston, F. E., Lohman, T. G., Pollock, M. L., Roche, A. F. & Wilmore, J. (1991). Skinfold thicknesses and measurement technique. In Anthropometric Standardizarion Reference Manual, abridged edition, pp. 5570 [ Lohman, G. T.Roche, A. F. and Martorell, R. editors]. Champaign, IL: Human Kinetics.Google Scholar
Heymsfield, S. B., Wang, J., Kehayias, J., Heshka, S., Lichtman, S. & Pierson, R. N. Jr (1989). Chemical determination of human body density in vivo: relevance to hydrodensitometry. American Journal of Clinical Nutrition 50, 12821289.CrossRefGoogle ScholarPubMed
Jackson, A. S., Pollock, M. L. & Ward, A. (1980). Generalized equations for predicting body dens“ity of women. Medicine and Science in Sports and Exercise 12, 175182.CrossRefGoogle Scholar
Lohman, T. G. (1986). Applicability of body composition techniques and constants for children and youth. In Exercise and Sport Science Reviews, vol. 14, pp. 325357 [Randolf, K. E. editor]. New York: Macmillan.Google Scholar
Lukaski, H. C., Bolonchuk, W. W., Hall, C. B. & Siders, W. A. (1986). Validation of tetapolar bioelectric impedance method to assess human body Composition. Journal of Applied Physiology 60, 13271332.CrossRefGoogle ScholarPubMed
Lukaski, H. C., Johnson, P. E., Bolonchuk, W. W. & Lykken, G. I. (1985). Assessment of fat-free mass using bioelectrical impedance measurements of the human body. American Journal of Clinical Nutrition 41, 810817.CrossRefGoogle ScholarPubMed
McNeill, G., Fowler, P. A., Maughan, R. J., McGaw, B. A., Fuller, M. F., Gvozdanovic, D. & Gvozdanovic, S. (1991). Body fat in lean and overweight women estimated by six methods. British Journal of Nutrition 65, 95103.CrossRefGoogle ScholarPubMed
Martin, A. D. & Drinkwater, D. T. (1991). Variability in measures of body fat. Assumptions or technique? Sports Medicine 11, 277288.Google ScholarPubMed
Mazess, R. B., Barden, H. S., Bisek, J. P. & Hanson, J. (1990). Dual-energy X-ray absorptiometry for total-body and regional bone-mineral and soft-tissue composition. American Journal of Clinical Nutrition 51, 11061112.CrossRefGoogle ScholarPubMed
Pritchard, J. E., Nowson, C. A., Strauss, B. J., Carlson, J. S., Kayamakci, B. & Wark, J. D. (1993). Evaluation of dual energy X-ray absorptiometry as a method of measurement of body fat. European Journal of Clinical Nutrition 47, 216228.Google ScholarPubMed
Siri, W. E. (1956). The gross composition of the body. In Advances in Biological and Medical Physics, pp. 239280 [Tobias, C. A. and Lawrence, J. H. editors]. New York: Academic Press.Google Scholar
Snead, D. S., Birge, S. & Kohrt, W. M. (1993).Age-related differences in body composition by hydrodensitometry and dualenergy X-ray absorptiometry. Journal of Applied Physiology 14, 770775.CrossRefGoogle Scholar
Suominen, H. (1993). Bone mineral density and long term exercise. An overview of cross-sectional athlete studies. Sports Medicine 16, 316330.CrossRefGoogle ScholarPubMed
Vogel, J. A. & Friedl, K. E. (1992). Body fat assessment in women. Special considerations. Sports Medicine 13, 245269.CrossRefGoogle ScholarPubMed
Wang, J., Heymsfield, S. B., Aulet, M., Thornton, J. C. & Pierson, R. N. Jr (1989). Body fat from body density: underwater weighing vs. dual-photon absorptiometry. American Journal of Clinical Nutrition 256, E829–E834.Google ScholarPubMed
Webster, B. L. & Barr, S. I. (1993). Body composition analysis of female adolescent athletes: comparing six regression equations. Medicine and Science in Sports and Exercise 25, 648653.CrossRefGoogle ScholarPubMed
Wilmore, J. (1992). Body weight and body composition. In Eating, Body Weight and Performance in Athletes, pp. 7793 [Brownell, K. D., Rodin, J. and Wilmore, J. H. editors]. Philadelphia: Lea & Febinger.Google Scholar