Hostname: page-component-586b7cd67f-t7fkt Total loading time: 0 Render date: 2024-11-20T08:35:30.077Z Has data issue: false hasContentIssue false

Biodynamics of cholesterol and bile acids in the lithiasic hamster

Published online by Cambridge University Press:  09 March 2007

J. Khallou
Affiliation:
Laboratoire de Physiologie de la Nutrition, URA 0646 CNRS, Bât. 447, Université Paris-Sud, 91405 Orsay Cedex, France
M. Riottot
Affiliation:
Laboratoire de Physiologie de la Nutrition, URA 0646 CNRS, Bât. 447, Université Paris-Sud, 91405 Orsay Cedex, France
M. Parquet
Affiliation:
Laboratoire de Physiologie de la Nutrition, URA 0646 CNRS, Bât. 447, Université Paris-Sud, 91405 Orsay Cedex, France
C. Verneau
Affiliation:
Laboratoire de Physiologie de la Nutrition, URA 0646 CNRS, Bât. 447, Université Paris-Sud, 91405 Orsay Cedex, France
C. Lutton
Affiliation:
Laboratoire de Physiologie de la Nutrition, URA 0646 CNRS, Bât. 447, Université Paris-Sud, 91405 Orsay Cedex, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

By using the isotopic equilibrium method in the young male Syrian hamster, the rates of cholesterol turnover processes, i.e. dietary cholesterol absorption, cholesterol synthesis, cholesterol excretion in the faeces and urine and cholesterol transformation into bile acids, were determined in the hamster receiving a control (C) or a lithogenic diet (L) for 7 weeks. At the end of this period the gall bladder of all animals in group L contained cholesterol gallstones. The coefficient of dietary cholesterol absorption was reduced by 26 %, cholesterol synthesis and cholesterol faecal excretion were twofold higher in group L than in group C. Bile acid content in the small intestine was diminished in group L, but bile acid composition was similar in the two groups. The increase in cholesterogenesis in lithiasic animals essentially took place in the liver. Bile acid biosynthesis did not significantly differ in the two groups, but represented only 35 % of total cholesterol input (dietary absorption + internal secretion) in group L ν. 52% in group C. Thus, in the lithiasic hamster, hepatic synthesis of cholesterol and bile acids are not coupled. The molar percentage of cholesterol in bile was twofold higher in group L than in group C but those of bile acids and of phospholipids were not modified. In the lithiasic hamster the specific activity of biliary cholesterol was similar to that in plasma and liver. Consequently, biliary cholesterol does not derive directly from cholesterol newly synthesized in the liver but from hepatic cholesterol rapidly exchangeable with plasma cholesterol.

Type
Lipid Metabolism
Copyright
Copyright © The Nutrition Society 1991

References

REFERENCES

Admirand & Small (1985). The physicochemical basis of cholesterol gallstone formation in man. Journal of Clinical Investigation 47, 10431052.Google Scholar
Alberts, A. W.Chen, J., Kuron, G., Hunt, V., Huff, J., Hoffman, C., Rothroch, J., Lopez, M., Joshua, H., Harris, E., Patchett, A., Monaghan, R., Currie, S., Stapley, E., Alberts-Schonberg, G., Hensens, O., Hirshfield, J., Hoogsteen, K., Liesch, J. & Springer, J. (1980). Mevinolin: a highly potent competitive inhibitor of hydroxy-methylglutaryl-coenzyme A reductase and a cholesterol-lowering agent. Proceedings of the National Academy of Sciences, U.S.A. 77, 39573961.CrossRefGoogle Scholar
Alvaro, M., Angelico, M., Angelico, F., Antonini, R., Mazzarella, B., Bracci, F., Ginanni, S., Corradini, S. & Attili, A. F. (1985). Plasma lipoproteins in gallstone patients. Relationship to biliary lipid composition. In Recent Advances in Bile Acid Research, pp. 223224 [Barbara, L., Dowling, R. H., Hofmann, A. L. and Roda, E., editors]. New York: Raven Press.Google Scholar
Bjorkhem, I. (1985). Mechanism of bile acid biosynthesis in mammalian liver. In New Comprehensive Biochemistry, pp. 231278 [Danielsson, H. and Sjövall, J, editors]. Amsterdam: Elsevier.Google Scholar
Bjorkhem, I. (1986). Effects of mevinolin in rat liver: evidence for a lack of coupling between synthesis of hydroxy-methylglutaryl-CoA-reductase and cholesterol 7α hydroxylase activity. Biochimica et Biophysica Acta 877, 4349.CrossRefGoogle Scholar
Carey, M. C. (1978). Critical tables for calculating the cholesterol saturation of native bile. Journal of Lipid Research 19, 945955.CrossRefGoogle ScholarPubMed
Chevallier, F. (1964). Transferts et synthése due cholestérol chez le rat au cours de sa croissance (Transfer and synthesis of cholesterol in rats during their growth.) Biochimica et Biophysica Acta 84, 316339.Google Scholar
Chevallier, F. & Giraud, F. (1966). Renouvellement par transfert du cholestérol chez les rats adultes et en croissance (Cholesterol renewal by transfer in growing and adult rats.) Bulletin de la Société de Chimie Biologique 48, 787801.Google Scholar
Chevallier, F. & Lutton, C. (1966). Vitesses des processus de renouvellement du cholestérol contenu dans son espace de transfert chez le rat. I. Méthode et résultats obtenus dans le cas d'un régime semi-synthétique témoin (Rates of cholesterol turnover processes in the transfer space of rat. I. Method and results obtained with a semipurified diet.) Bulletin de la Société de Chimie Biologique 48, 507523.Google Scholar
Chevallier, F. & Lutton, C. (1973). The intestine is the major site of cholesterol synthesis in the rat. Nature 242, 6162.Google ScholarPubMed
Chevallier, F. & Rodrigues-Branco, J. (1963). Synthése du cholestérol hépatique à partir d'acétate 1-14C chez les rats normaux et porteurs de fistule biliaire. Origine du cholestérol biliaire (Hepatic cholesterol synthesis determined by the use of [1-14C] Acetate in the normal and bile-diverted rats. Origin of biliary cholesterol.) Revue Française d' Etudes Cliniques et Biologiques 8, 903909.Google Scholar
Dam, H. (1969). Nutritional aspects of gallstone formation with particular reference to alimentary production of gallstones in laboratory animals. World Review of Nutrition and Dietetics 11, 199239.CrossRefGoogle ScholarPubMed
Einarsson, K., Angelin, B., Ewerth, S., Niesell, K. & Bjorkhem, I. (1986). Bile acid synthesis in man: assay of hepatic microsomal cholesterol 7α-hydroxylase activity by isotope dilution-mass spectrometry. Journal of Lipid Research 27, 8288.CrossRefGoogle ScholarPubMed
Férézou, J., Coste, T. & Chevallier, F. (1981). Origin of neutral sterols in human feces studied by stable isotope labeling (D and 13C). Existence of an external secretion of cholesterol. Digestion 21, 232243.CrossRefGoogle ScholarPubMed
Férézou, J., Huc, D., Coste, T., Rautureau, J. & Lutton, C. (1987). Origine du cholestérol biliaire chez l'Homme (Origin of biliary cholesterol in man.) Gastroentérologie Clinique et Biologique 11, 811812.Google Scholar
Ginsberg, R. L., Duane, W. K. & Flock, E. V. (1977). Hepatic-3-hydroxy-3-methyl glutaryl CoA reductase activity in hamsters on a lithogenic diet. Journal of Laboratory and Clinical Medicine 89, 928936.Google Scholar
Grundy, S. M., Ahrens, E. H. & Miettinen, T. A. (1965). Quantitative isolation and gas liquid chromatography analysis of total fecal bile acids. Journal of Lipid Research 6, 397410.CrossRefGoogle ScholarPubMed
Gurantz, D., Laker, M. F. & Hofmann, A. F. (1981). Enzymatic measurement of choline-containing phospholipids in bile. Journal of Lipid Research 22, 373376.Google ScholarPubMed
Holzbach, R. T., Marsh, M., Olszewski, M. & Holan, K. (1973). Cholesterol solubility in bile. Evidence that supersaturated bile is frequent in healthy man. Journal of Clinical Investigation 52, 14671479.CrossRefGoogle ScholarPubMed
Key, P. H., Bonorris, G. G., Marks, J. W., Chung, A. & Schoenfield, L. (1980). Biliary lipid synthesis and secretion in gallstone patients before and during treatment with chenodeoxycholic acid. Journal of Laboratory and Clinical Medicine 95, 816826.Google ScholarPubMed
Khallou, J. (1989). Biodynamique du cholestérol chez le hamster lithiasique. Influence d'un amidon riche en amylose (Biodynamics of cholesterol in the lithiasic hamster. Influence of an amylomaize starch.) Thèse d'Université, Paris XI.Google Scholar
Kubota, S., Kajiyama, G., Sasaki, H., Horiuchi, I. & Myoshi, A. (1981). Lipid metabolism in the development of cholesterol gallstone in hamster. IV. The effect of essential phospholipids and plant sterols on the biliary lipids. Hiroshima Journal of Medicine and Science 30, 300309.Google ScholarPubMed
Lutton, C. (1990). Dynamique du cholestérol et des acides biliaires. Aspects comparatifs (Cholesterol and bile acid dynamics: comparative aspects.) Reproduction Nutrition Développement 30, 145160.CrossRefGoogle ScholarPubMed
Lutton, C., & Chevallier, F. (1972). Vitesses des processus de renouvellement du cholestérol contenu dans son espace de transfert, chez le rat. III. Modifications et etude critique de la méthode d' équilibre isotopique (Rates of cholesterol turnover processes in the transfer space of rat: III. Modifications and critical study of the isotopic equilibrium method.) Biochimica et Biophysica Acta 255, 762779.CrossRefGoogle Scholar
Lutton, C., Férézou, J., Sérougne, C., Verneau, C., Champarnaud, G., Magot, T., Mathé, D. & Sulpice, J. C. (1989). Critical analysis of the use of 14C-acetate for measuring in vivo rat cholesterol synthesis. Reproduction Nutrition Développement 30, 7184.CrossRefGoogle Scholar
Lutton, C., Mathé, D. & Chevallier, F. (1973). Vitesses des processus de renouvellement du cholestérol contenu dans son espace de transfert, chez le rat. VI. Influence de la ligature du choledoque et de l'ingestion d'acides biliaires ou de cholestyramine (Rates of cholesterol turnover processes in the transfer space of rat. VI. Influence of bile duct ligation and ingestion of bile acid or cholestyramine.) Biochimica et Biophysica Acta 306, 483496.CrossRefGoogle Scholar
Mathé, D. & Lutton, C. (1984). Le cholestérol. Aspects dynamiques et métaboliques (Cholesterol: dynamics and metabolic aspects.). Journal de Physiologie 79, 4197.Google ScholarPubMed
Montet, J. C., Reynier, M. O., Montet, A. M. & Gerolami, A. (1979). Distinct effects of three bile salts on cholesterol solubilization by oleate-monoolein-bile salt micelles. Biochimica et Biophysica Acta 575, 289294.CrossRefGoogle ScholarPubMed
Myant, N. B. & Mitropoulos, K. A. (1977). Cholesterol 7α-hydroxylase. Journal of Lipid Research 18, 135145.CrossRefGoogle Scholar
Nervi, F. O., Weis, H. G. & Dietschy, J. M. (1975). The kinetics characteristics of inhibition of hepatic cholesterogenesis by lipoproteins of intestinal origin. Journal of Biological Chemistry 250, 41454151.CrossRefGoogle ScholarPubMed
Ozben, T. (1989). Biliary lipid composition and gallstone formation in rabbits fed on soy protein, cholesterol, casein and modified casein. Biochemical Journal 263, 293296.CrossRefGoogle ScholarPubMed
Reuben, A., Maton, P. N., Murphy, G. M. & Dowling, R. H. (1985). Bile lipid secretion in obese and non obese individuals with and without gallstones. Clinical Science 69, 7179.CrossRefGoogle ScholarPubMed
Robins, S. J. & Fasulo, J. (1973). Mechanisms of lithogenic bile production. Studies in the hamster fed an essential fatty acid deficient diet. Gastroenterology 65, 104114.CrossRefGoogle ScholarPubMed
Roda, A., Feste, D., Sama, L., Mazella, G., Aldini, R., Roda, E. & Barbara, L. (1975). Enzymatic determination of cholesterol in bile. Clinica Chimica Acta 64, 337341.CrossRefGoogle ScholarPubMed
Rodwell, U. W., Nordrom, J. M. & Mitschelen, J. J. (1976). Regulation of HMG CoA reductase. Advances in Lipid Research 14, 174.CrossRefGoogle ScholarPubMed
Rukaj, A. & Sérougne, C. (1983). Effect of excess dietary cystine on the biodynamics of cholesterol in the rat. Biochimica et Biophysica Acta 753, 15.CrossRefGoogle ScholarPubMed
Salen, G., Nicolau, G., Shefer, S. & Mosbach, E. H. (1975). Hepatic cholesterol metabolism in patients with gallstones. Gastroenterology 69, 676684.CrossRefGoogle ScholarPubMed
Sérougne, C. & Lutton, C. (1982). Répartition du cholestérol d'origine plasmatique dans la villosité intestinale chez le rat (Plasma cholesterol distribution in the intestinal villus of the rat.) Journal de Physiologic 78, 170174.Google Scholar
Singhal, A. K., Ayengar, N. K. N., May, P. S., McSherry, C. K. & Mosbach, E. H. (1983 a). Cholesterol metabolism in two strains of hamsters. In Dietary Fats and Health, pp. 267277. Champaign: American Oil Chemist's Society.Google Scholar
Singhal, A. K., Cohen, B. I., Finver-Sadowsky, J., McSherry, C. K. & Mosbach, E. H. (1984). Role of hydrophilic bile acids and sterols on cholelithiasis in the hamster. Journal of Lipid Research 25, 564570.CrossRefGoogle ScholarPubMed
Singhal, A. K., Finver-Sadowsky, J., McSherry, C. K. & Mosbach, E. H. (1983 b). Effect of cholesterol and bile acids on the regulation of cholesterol metabolism in hamster. Biochimica et Biophysica Acta 752, 214222.CrossRefGoogle ScholarPubMed
Thistle, J. L. & Hofmann, A. F. (1973). Efficacy and specificity of chenodeoxycholic therapy for dissolving gallstones. New England Journal of Medicine 289, 655659.CrossRefGoogle ScholarPubMed
Thomas, P. J. & Hofmann, A. F. (1973). A simple calculation of the lithogenic index of bile: expressing biliary lipid composition on rectangular coordinates. Gastroenterology 65, 698700.CrossRefGoogle ScholarPubMed
Turley, S. D. & Dietschy, J. M. (1978). Re-evaluation of the 3α-hydroxysteroid dehydrogenase assay for total bile acids in bile. Journal of Lipid Research 19, 924929.CrossRefGoogle Scholar
Turley, S. D. & Spady, D. K. (1983). Alteration of the degree of biliary cholesterol saturation in the hamster and rat by manipulation on the pools of preformed and newly synthesized cholesterol. Gastroenterology 84, 253264.CrossRefGoogle ScholarPubMed
Van Erpecum, K. J., Van Berge Henegouwen, G. P., Stoelwinder, B., Schmidt, Y. M. G. & Willekens, F. L. H. (1990). Bile concentration is a key factor for nucleation of cholesterol crystals and cholesterol saturation index in gallbladder bile of gallstone patients. Hepatology 11, 16.CrossRefGoogle ScholarPubMed
Weis, H. J. & Dietschy, J. M. (1969). Failure of bile acids to control hepatic cholesterogenesis: evidence for the endogenous cholesterol feed-back. Journal of Clinical Investigation 48, 23982408.CrossRefGoogle Scholar
Wheeler, H. O. (1973). Biliary secretion of bile acids, lecithin and cholesterol in hamsters with gallstones. Gastroenterology 65, 92103.CrossRefGoogle ScholarPubMed
Wilson, J. D. (1972). The relation between cholesterol absorption and cholesterol synthesis in the baboon. Journal of Clinical Investigation 51, 14501458.CrossRefGoogle ScholarPubMed