Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T01:37:28.277Z Has data issue: false hasContentIssue false

Bioavailability of energy, nitrogen, fat, zinc, iron and calcium from rural and urban mexican diets*

Published online by Cambridge University Press:  09 March 2007

Jorge L. Rosado
Affiliation:
Departamento de Fisiologia de la Nutricion, Instituto National de la Nutrition ‘Salvador Zubiran’, Vasco de Quiroga #15, Tlalpan, Mexico DF 14000 and the Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA
Patricia Lopez
Affiliation:
Departamento de Fisiologia de la Nutricion, Instituto National de la Nutrition ‘Salvador Zubiran’, Vasco de Quiroga #15, Tlalpan, Mexico DF 14000 and the Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA
Maria Morales
Affiliation:
Departamento de Fisiologia de la Nutricion, Instituto National de la Nutrition ‘Salvador Zubiran’, Vasco de Quiroga #15, Tlalpan, Mexico DF 14000 and the Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA
Elsa Munoz
Affiliation:
Departamento de Fisiologia de la Nutricion, Instituto National de la Nutrition ‘Salvador Zubiran’, Vasco de Quiroga #15, Tlalpan, Mexico DF 14000 and the Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA
Lindsay H. Allen
Affiliation:
Departamento de Fisiologia de la Nutricion, Instituto National de la Nutrition ‘Salvador Zubiran’, Vasco de Quiroga #15, Tlalpan, Mexico DF 14000 and the Department of Nutritional Sciences, University of Connecticut, Storrs, CT 06269-4017, USA
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The availabilities of nutrients from a representative rural Mexican diet (RMD) and a representative urban Mexican diet (UMD) were evaluated by balance experiments in sixteen Mexican women. Compared with UMD, the plant-based RMD led to a higher number of defaecations and higher faecal excretion of dry matter, fat, nitrogen and energy. Apparent digestibility of N from RMD was only 67% compared with 90% from UMD. N balance was 0.4 and 2.6 g/d with RMD and UMD respectively (P < 0.001). Apparent digestibility of energy was 89 and 95% from RMD and UMD respectively (P < 0.001). Calculation of the metabolizable energy (ME) using Atwater's (Atwater & Bryant, 1900) general factors overestimates the determined ME in RMD by 8%. The Food and Agriculture Organization/World Health Organization/United Nations University (World Health Organization, 1985) recommended factors for correction of digestibility of fibre intake overestimate energy and protein absorption from RMD. The diets provided similar amounts of zinc, and its apparent absorption from RMD was 0.5 mg/d (4.6%) and its balance was 0.1 mg/d. This compared with values for UMD of 1.6 mg/d (16%) and 1.2 mg/d respectively. Iron intake was higher from RMD (17.4 v. 11.6 mg/d; P < 0.01), but apparent absorption was 17 v. 35% and balance was 2.7 and 3.8 mg/d (P < 0.001) for RMD and UMD respectively. RMD also contained more calcium (745 v. 410 mg/d) but apparent absorption from RMD was negative (−136 v. 15 mg/d) and balance was more negative (−197 v.−77 mg/d; P < 0.05). Thus, the content of these minerals is not low in the rural diet but their bioavailabilities are poor.

Type
Bioavailability of Nutrients
Copyright
Copyright © The Nutrition Society 1992

References

REFERENCES

Ali, R., Staub, H., Leveille, G. A. & Boyle, P. C. (1982). Dietary fiber and obesity. A review. In Dietary Fiber in Health and Disease, pp. 139149 [Vahouny, G. V. and Kritchevsky, D., editors]. New York: Plenum Press.Google Scholar
Allen, L. H. (1982). Calcium bioavailability and absorption: A review. American Journal of Clinical Nutrition 35, 783808.Google Scholar
Allen, L. H., Black, A. K., Backstrand, J., Pelto, G. H., Ely, R. D., Molina, E. & Chavez, A. (1991). Analytical approach for exploring the importance of dietary quality vs quantity for the growth of Mexican children. Food and Nutrition Bulletin 13, 95104.CrossRefGoogle Scholar
Allen, L. H., Pelto, G. H. & Chavez, A. (1987). The Collaborative Research and Support Program on Food Intake and Human Function: Mexico Project. Storrs: University of Connecticut.Google Scholar
Allen, L. H., Reynolds, W. L. & Margen, S. (1979). Polyethylene glycol as a quantitative fecal marker in human nutrition experiments. American Journal of Clinical Nutrition 32, 427440.Google Scholar
Association of Official Analytical Chemists (1984). In Official Methods of Analysis, 14th ed. Washington, DC: AOAC.Google Scholar
Atwater, W. O. & Bryant, A. P. (1900). The availability and fuel value of foods materials. Report of the Storrs Agricultural Experiment Station, Storrs 1899, pp. 73110, Storrs, CT: University of Connecticut.Google Scholar
Behall, K. M., Schofield, B. S., Lee, K., Powell, A. S. & Moser, P. B. (1987). Mineral balance in adult men: effect of four refined fibers. American Journal of Clinical Nutrition 46, 307314.CrossRefGoogle ScholarPubMed
Bernstein, L. M., Grossman, M. I., Krzywicki, H., Harding, R., Berger, F. M., McGary, V. E., Francis, E. & Levy, L. M. (1955). Comparison of various methods for determination of metabolizable energy value of a mixed diet in humans. U.S. Army Medical Research and Nutrition Laboratory Report no. 168, Denver, CO: U.S. Army Medical Research and Nutrition Laboratory.Google Scholar
Blundell, J. E. & Burley, V. J. (1987). Satiation, satiety and the action of fibre on food intake. International Journal of Obesity 11 Suppl. 1, 8793.Google ScholarPubMed
Bonsnes, R. W. & Taussky, H. H. (1945). On the colorimetric determination of creatinine by the Jaffé reaction. Journal of Biological Chemistry 158, 581584.Google Scholar
Bourges, H. (1980). Nutritional status of the Mexican population. In Nutrition in the 1980s: Constraints on Our Knowledge, pp. 249269 [Selvey, N. and White, P. L., editors]. New York: Alan R. Liss, Inc.Google Scholar
Calloway, D. H. & Kretsch, M. J. (1978). Protein and energy utilization in men given a rural Guatemalan diet and egg formulas with and without added oat bran. American Journal of Clinical Nutrition 31, 118126.Google Scholar
Carnovale, E., Lombardi-Boccia, G. & Lugaro, E. (1987). Phytate and zinc content of Italian diets. Human Nutrition Applied Nutrition 41A, 180186.Google Scholar
Chapman, R. W., Sillery, J. K., Graham, M. M. & Saunders, D. R. (1985). Absorption of starch by healthy ileostomates: Effect of transit time and carbohydrate load. American Journal of Clinical Nutrition 41, 12441248.CrossRefGoogle ScholarPubMed
Cornin, A. & Delpeuch, F. (1981). Effect of fiber in sorghum on nitrogen digestibility. American Journal of Clinical Nutrition 34, 24542459.CrossRefGoogle Scholar
Cullumbine, H., Basnayake, V., Lemottee, J. & Wickramanayake, T. W. (1950). Mineral metabolism on rice diets. British Journal of Nutrition 4, 101111.CrossRefGoogle ScholarPubMed
Cummings, J. H. (1984). Microbial digestion of complex carbohydrates in man. Proceedings of the Nutrition Society 43, 3544.Google ScholarPubMed
Cummings, J. H., Hill, M. J., Houston, H., Branch, W. J. & Jenkins, D. J. A. (1979). The effect of meat protein and dietary fiber on colonic function and metabolism. I. Changes in bowel habit, bile acid excretion and calcium absorption. American Journal of Clinical Nutrition 32, 20862093.Google Scholar
Evans, E. & Miller, D. S. (1975). Bulking agents in the treatment of obesity. Nutrition and Metabolism 18, 199203.CrossRefGoogle ScholarPubMed
Frisancho, A. R. (1984). New standards of weight and body composition by frame size and height for assessment of nutritional status of adults and the elderly. American Journal of Clinical Nutrition 40, 818819.CrossRefGoogle ScholarPubMed
Gallaher, D. & Schneeman, B. O. (1985). Effect of dietary cellulose on site of lipid absorption. American Journal of Physiology 249, G184191.Google Scholar
Garn, S. M. (1970). The Earlier Gain and the Later Loss of Cortical Bone. Springfield, II: Charles C. Thomas.Google Scholar
Goranzon, H. & Forsum, E. (1987). Metabolizable energy in humans on two diets containing different sources of dietary fiber. Calculations and analysis. Journal of Nutrition 117, 267273.Google ScholarPubMed
Greger, J. L. & Sciscoe, B. S. (1977). Zinc nutriture of elderly participants in an urban feeding program. Journal of the American Dietetic Association 70, 3741.Google Scholar
Hernandez, M., Bourges, H. & Chavez, A. (1967). Tablas de Valor Nutritivo de los Alimentos Mexicanos. Mexico DF: Instituto Nacional de la Nutricion.Google Scholar
Holden, J. M., Wolf, W. R. & Mertz, W. (1979). Zinc and copper in self-selected diets. Journal of the American Dietetic Association 75, 2328.CrossRefGoogle ScholarPubMed
Hunt, I. F., Murphy, N. J., Gomez, J. & Smith, J. C. Jr. (1979). Dietary zinc intake of low-income pregnant women of Mexican descent. American Journal of Clinical Nutrition 32, 15111518.Google Scholar
Instituto de Nutricion de Centroamerica y Panama (1974). Composicion de los Alimentos Latinoamericanos. Guatemala: INCAPGoogle Scholar
Instituto Nacional de la Nutricion (1974). Encuestas nutricionales en Mexico, volumen II: Estudios de 1963 a 1974. Publication L-21. Mexico DF: Division de Nutricion.Google Scholar
Kelsay, J. L., Behall, K. M. & Prather, E. S. (1978). Effect of fiber from fruits and vegetables on metabolic responses of human subjects. I. Bowel transit time, number of defecations, fecal weight, urinary excretion of energy and nitrogen and apparent digestibilities of energy, nitrogen and fat. American Journal of Clinical Nutrition 31, 11491153.CrossRefGoogle ScholarPubMed
Kelsay, J. L., Behall, K. M. & Prather, E. S. (1979). Effect of fiber from fruits and vegetables on metabolic responses of human subjects. II. Calcium, magnesium, iron and silicon balances. American Journal of Clinical Nutrition 32, 18761880.Google Scholar
Kelsay, J. L., Clark, W. M., Herbst, B. J. & Prather, E. S. (1981). Effect of fiber level on bowel function and trace mineral balances of human subjects. Journal of Agricultural and Food Chemistry 29, 461465.Google Scholar
Kies, C. & Fox, H. M. (1978). Fiber and protein nutritional status. Cereal Foods World 23, 248252.Google Scholar
Levine, A. S., Tallman,. J. R., Grace, M. K., Parker, S. A., Billington, C. J. & Levitt, M. D. (1989). Effect of breakfast cereals on short-term food intake. American Journal of Clinical Nutrition 50, 13031307.Google Scholar
Lynch, S. R. (1984). Iron. In Absorption and Malabsorption of Mineral Nutrients, pp. 89124 [Solomons, N. W. and Rosenberg, I. H., editors]. New York: Alan R. Liss, Inc.Google Scholar
McCance, R. A. & Widdowson, E. M. (1942). Mineral metabolism of healthy adults on white and brown bread dietaries. Journal of Physiology 101, 4485.Google Scholar
Madrigal, H. F., Chavez, A., Moreno-Terrazas, O., Garcia, T. B. & Gutierrez, G. V. (1986). Consumo de alimentos y estado nutritional de la poblacion en el medio rural Mexicano (Food consumption and nutritional status of the rural Mexican population). Revista de Investigaciones Clinical (Mexico) 39, Suppl. 919.Google Scholar
Malawer, S. J. & Powell, D. W. (1967). An improved turbidimetric analysis of polyethylene glycol using an emulsifier. Gastroenterology 53, 250256.Google Scholar
Merrill, A. L. & Watt, B. K. (1955). Energy value of foods: basis and derivations. Agricultural Handbook no. 74. Washington, DC: US Department of Agriculture.Google Scholar
Monsen, E. R., Hallberg, L., Layrisse, M., Hegsted, D. M., Cook, J. D., Mertz, W. & Finch, C. A. (1978). Estimation of available dietary iron. American Journal of Clinical Nutrition 31, 134141.Google Scholar
National Research Council (1989). Recommended Dietary Allowances, 10th ed. Washington, DC: National Academy of Sciences.Google Scholar
Prynne, C. J. & Southgate, D. A. T. (1979). The effects of a supplement of dietary fibre on fecal excretion by human subjects. British Journal of Nutrition 41, 495503.CrossRefGoogle ScholarPubMed
Reinhold, J. G., Hedayati, H., Lahimgaradeh, A. & Nasr, K. (1973). Zinc, calcium, phosphorus and nitrogen balance of Iranian villages following a change from phytate-rich to phytate-poor diet. Ecology of Food and Nutrition 2, 157162.Google Scholar
Reinhold, J. G., Ismail-Beigi, F. & Faradji, B. (1975). Fiber vs phytate as determinant of the availability of calcium, zinc and iron of breadstuffs. Nutrition Reports International 12, 7585.Google Scholar
Rigaud, D., Ryttig, R., Leeds, R., Bard, D. & Apfelbaum, M. (1987). Effect of a moderate dietary fiber supplement on hunger rating, energy input and fecal energy output in young healthy volunteers. A randomized, double-blind, cross-over trial. International Journal of Obesity 11, Suppl. 1, 7378.Google Scholar
Rosado, J. L., Lopez, P., Morales, M. & Allen, L. H. (1991). Fiber digestibility and breath hydrogen excretion from rural and urban Mexican diets. American Journal of Clinical Nutrition 53, 5560.CrossRefGoogle ScholarPubMed
Sandstrom, B., Almgren, A., Kivisto, B. & Cederblad, A. (1987). Zinc absorption in humans from meals based on rye, barley, oatmeal, triticale and whole wheat. Journal of Nutrition 117, 18981902.CrossRefGoogle ScholarPubMed
Schwartz, S. E., Levine, R. A., Singh, A., Scheidecker, J. R. & Track, N. S. (1982). Sustained pectin ingestion delays gastric emptying. Gastroenterology 83, 812817.Google Scholar
Simmons, G. (1955). Medical and Public Health Laboratory Methods. Philadelphia: Lea and Febiger.Google Scholar
Snedecor, G. W. & Cochran, W. G. (1980). Statistical Methods, 7th ed. Ames Iowa: Iowa State University Press.Google Scholar
Solomons, N. W. (1986). Calcium intake and availability from the human diet. Clinical Nutrition 5, 167176.Google Scholar
Southgate, D. A. T. & Durnin, J. G. V. A. (1970). Calorie conversion factors: An experimental reassessment of the factors used in the calculation of the energy values of human diets. British Journal of Nutrition 24, 517535.Google Scholar
Spencer, H., Lewin, I., Fowler, J. & Samachson, J. (1969). Influence of dietary calcium intake on Ca47 absorption in man. American Journal of Medicine 46, 197205.CrossRefGoogle ScholarPubMed
van de Kamer, J. H., ten Bokkel, H. H. & Weyers, H. A. (1949). Rapid method for the determination of fat in feces. Journal of Biological Chemistry 177, 347355.Google Scholar
Villar, J., Belizan, J. M. & Fischer, P. J. (1983). Epidemiologic observations on the relationship between calcium intake and eclampsia. International Journal of Gynaecology and Obstetrics 21, 271278.CrossRefGoogle ScholarPubMed
Walker, A. R. P., Fox, F. W. & Irving, J. T. (1948). Studies in human mineral metabolism. I. The effect of bread rich in phytate phosphorus on the metabolism of certain mineral salts with special reference to calcium. Biochemical Journal 42, 452462.Google Scholar
Wolever, T. M. S., Cohen, Z., Thompson, L. U., Jenkins, M. J., Prokipchuck, E. J. & World Health Organization (1973). Trace Elements in Human Health. Geneva: WHO.Google Scholar
World Health Organization (1985). Energy and Protein Requirements. Technical Report Series no. 724. Report of a Joint FAO/WHO/UNU Expert Consultation. Geneva: WHO.Google Scholar