Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-05T13:56:57.450Z Has data issue: false hasContentIssue false

The bioavailability of α- and β-carotene is affected by gut microflora in the rat

Published online by Cambridge University Press:  09 March 2007

P. Grolier*
Affiliation:
Centre de Recherche en Nutrition Humaine de Clermont-Ferrand, Unité des Maladies Métaboliques et Micronutriments, INRA, Theix, 63122 Saint-Genès-Champanelle, France
P. Borel
Affiliation:
Centre de Recherche en Nutrition Humaine de Clermont-Ferrand, Unité des Maladies Métaboliques et Micronutriments, INRA, Theix, 63122 Saint-Genès-Champanelle, France
C. Duszka
Affiliation:
Centre de Recherche en Nutrition Humaine de Clermont-Ferrand, Unité des Maladies Métaboliques et Micronutriments, INRA, Theix, 63122 Saint-Genès-Champanelle, France
S. Lory
Affiliation:
Unité d'écologie et Physiologie du Système Digestif, INRA, 78352 Jouy-en-Josas, Cedex, France
M. C. Alexandre-Gouabau
Affiliation:
Centre de Recherche en Nutrition Humaine de Clermont-Ferrand, Unité des Maladies Métaboliques et Micronutriments, INRA, Theix, 63122 Saint-Genès-Champanelle, France
V. Azais-Braesco
Affiliation:
Centre de Recherche en Nutrition Humaine de Clermont-Ferrand, Unité des Maladies Métaboliques et Micronutriments, INRA, Theix, 63122 Saint-Genès-Champanelle, France
L. Nugon-Baudon
Affiliation:
Unité d'écologie et Physiologie du Système Digestif, INRA, 78352 Jouy-en-Josas, Cedex, France
*
*Corresponding author: Dr Pascal Grolier, fax +33 4 73 60 82 72, email [email protected]
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The present study examined whether the intestinal microflora could affect the bioavailability and vitamin A activity of dietary α- and β-carotene in the rat. In the first set of experiments, we used conventional, germ-free (axenic), and human-flora-associated (heteroxenic) rats. In a second series, conventional rats were treated with either an antibiotic mixture or a potent inhibitor of gastric secretion (Omeprazole). All animals were first depleted of vitamin A over 4 weeks and then were fed on a sterilized diet supplemented with 14 mg β-carotene and 3 mg α-carotene/kg for 2 weeks. In both experiments, a reduction in the intestinal microflora resulted in an increased storage of β-carotene, α-carotene and vitamin A in the liver. Neither the nature of the metabolism of the intestinal microflora (aerobic or anaerobic) nor treatment with omeprazole, to modify intestinal pH, induced a significant effect on the measured variables. When incubated with 15 μmol β-carotene/l for 72 h, neither the anaerobic nor the aerobic sub-fractions obtained from rat or human faeces contributed to β-carotene degradation or to vitamin A synthesis. These findings suggest that reduction in gut microflora results in a better utilization of α- and β-carotene by rats, although bacteria do not have a direct effect on the bioavailability of these pigments.

Type
Research Article
Copyright
Copyright © The Nutrition Society 1998

References

Almquist, HJ & Maurer, S (1955) The effect of antibiotic, anti-oxidant, and fat on conversion of carotene to vitamin A in the chicken. Archives of Biochemistry and Biophysics 55, 297298.CrossRefGoogle ScholarPubMed
Andrieux, C, Gadelle, D, Leprince, C & Sacquet, E (1989) Effects of some poorly digestible carbohydrates on bile acid bacterial transformations in the rat. British Journal of Nutrition 62, 103119.Google Scholar
Aono, R & Horikoshi, K (1991) Carotenes produced by alkaliphilic yellow pigmented strains of Bacillus. Agricultural and Biological Chemistry 55, 26432645.Google Scholar
Cobb, MM, Holloway, BA & Rivers, JM (1991) Ascorbic acid catabolism by gut microflora: studies in germ-free and conventional guinea pigs. Journal of Nutritional Biochemistry 2, 635643.CrossRefGoogle Scholar
Duszka, C, Grolier, P, Azim, EM, Alexandre-Gouabau, MC, Borel, P & Azais-Braesco, V (1996) Rat intestinal β-carotene dioxygenase activity is located primarily in the cytosol of mature jejunal enterocytes. Journal of Nutrition 126, 25502556.Google Scholar
Eggum, BO, Thorbek, G, Beames, RM, Chwalibog, A & Henckel, S (1982) Influence of diet and microbial activity in the digestive tract on digestibility, and nitrogen and energy metabolism in rats and pigs. British Journal of Nutrition 48, 161175.Google Scholar
Gorbach, SL & Goldin, BR (1992) Nutrition and the gastrointestinal microflora. Nutrition Reviews 50, 378381.Google Scholar
Grolier, P, Duszka, C, Borel, P, Alexandre-Gouabau, MC & Azais-Braesco, V (1997) In vitro and in vivo inhibition of β-carotene dioxygenase activity by canthaxanthin in rat intestine. Archives of Biochemistry and Biophysics 348, 233238.CrossRefGoogle ScholarPubMed
Guerrant, NB (1960) Chlorotetracycline and growth promoting effect of beta-carotene and vitamin A in rats. Proceedings of the Society of Experimental Biology and Medicine 105, 400403.CrossRefGoogle Scholar
Gustafsson, BE & Norman, A (1969) Influence of the diet on the turnover of bile acids in germ-free and conventional rats. British Journal of Nutrition 23, 429442.Google Scholar
Haboubi, NY & Montgomery, RD (1992) Small-bowel bacterial overgrowth in elderly people: clinical significance and response to treatment. Age and Ageing 21, 1319.CrossRefGoogle ScholarPubMed
Hart, DJ & Scott, KJ (1995) Development and evaluation of an HPLC method for the analysis of carotenoids in foods, and the measurement of the carotenoid content of vegetables and fruits commonly consumed in the UK. Food Chemistry 54, 101111.Google Scholar
King, TB, Lohman, TG & Smith, GS (1962) Evidence of rumeno-reticular losses of vitamin A and carotene. Journal of Animal Sciences 21, 1002 Abstr.Google Scholar
Kim, SW, Rogers, QR & Morris, JG (1996) Dietary antibiotics decrease taurine loss in cats fed a canned heat-processed diet. Journal of Nutrition 126, 509515.CrossRefGoogle ScholarPubMed
Krinsky, NI (1994) The biological properties of carotenoids. Pure Applied Chemistry 66, 10031010.CrossRefGoogle Scholar
Larsson, H, Carlsson, E, Junggren, U, Olbe, L, Sjöstrand, SE, Skanberg, I & Sundell, G (1983) Inhibition of gastric secretion by omeprazole in the dog and rat. Gastroenterology 85, 900907.Google Scholar
McGillivray, WA (1951) The apparent intestinal synthesis of carotene by sheep. British Journal of Nutrition 5, 223228.Google Scholar
Meslin, JC, Sacquet, E & Raibaud, P (1974) Action d'une flore microbienne qui ne déconjugue pas les sels biliaires sur la morphologie et le renouvellement cellulaire de la muqueuse de l'intestin grêle du rat (Effect of a microbial flora that do not deconjugate bile salts on epithelium renewal and morphology of rat small intestine). Annales de Biologie Animale Biochimie Biophysique 14, 709720.CrossRefGoogle Scholar
Mitsuoka, T (1992) Intestinal flora and aging. Nutrition Reviews 50, 438446.Google Scholar
Moundras, C, Behr, SR, Demigné, C, Mazur, A & Rémésy, C (1994) Fermentable carbohydrates that enhance fecal bile acid excretion lower plasma cholesterol and apolipoprotein E-rich HDL in rats. Journal of Nutrition 124, 21792188.Google Scholar
Moundras, M, Behr, SR, Rémésy, C & Demigné, C (1997) Fecal losses of sterols and bile acids induced by feeding rats guar gum are due to greater pool size and liver bile acid secretion. Journal of Nutrition 127, 10681076.CrossRefGoogle ScholarPubMed
Riottot, M, Sacquet, E, Villa, JP & Leprince, C (1980) Relationship between small intestine transit and bile acid metabolism in axenic and holoxenic rats fed different diets. Reproduction Nutrition Development 20, 163171.Google Scholar
Roland, N, Nugon-Baudon, L, Andrieux, C & Szylit, O (1995) Comparative study of the fermentative characteristics of inulin and different types of fibre in rats inoculated with a human whole faecal flora. British Journal of Nutrition 74, 239249.Google Scholar
Sacquet, E, Mejean, C, Leprince, C & Riottot, M (1976) Action du régime alimentaire et de la flore microbienne du tractus digestif sur le pool intestinal et l'excrétion fécale des acides biliaires chez le rat: étude comparée chez des rats axéniques, gnotoxéniques et holoxéniques (Effects of diet and microbial flora on intestinal bile salt pool size and excretion rate in rat: a comparative study with axenic, gnotoxenic and holoxenic rats). Annales de la Nutrition et de l'Alimentation 30, 603617.Google Scholar
Tang, G, Serfaty-Lacrosniere, C, Camilo, ME & Russell, RM (1996) Gastric acidity influences the blood response to a β-carotene dose in humans. American Journal of Clinical Nutrition 64, 622626.Google Scholar
Villard, L & Bates, CJ (1986) Carotene dioxygenase (EC 1.13.11.21) activity in rat intestine: effects of vitamin A deficiency and of pregnancy. British Journal of Nutrition 56, 115122.Google Scholar