Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-26T10:29:31.508Z Has data issue: false hasContentIssue false

Analysis of cyclic feed intake in rats fed on a zinc-deficient diet and the level of dihydropyrimidinase (EC 3.5.2.2)

Published online by Cambridge University Press:  09 March 2007

Nanaya Tamaki
Affiliation:
Faculty of Nutrition, Kobe Gakuin University, Arise, Igawadani, Nishi-ku, Kobe 651–21, Japan
Shigeko Fujimoto-Sakata
Affiliation:
Faculty of Nutrition, Kobe Gakuin University, Arise, Igawadani, Nishi-ku, Kobe 651–21, Japan
Mariko Kikugawa
Affiliation:
Faculty of Nutrition, Kobe Gakuin University, Arise, Igawadani, Nishi-ku, Kobe 651–21, Japan
Masae Kaneko
Affiliation:
Faculty of Nutrition, Kobe Gakuin University, Arise, Igawadani, Nishi-ku, Kobe 651–21, Japan
Satomi Onosaka
Affiliation:
Faculty of Nutrition, Kobe Gakuin University, Arise, Igawadani, Nishi-ku, Kobe 651–21, Japan
Tatsuya Takagi
Affiliation:
Genome Information Research Center, Osaka University, Yamadaoka 3-1, Suita 565, Japan
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The body weight and feed intake of rats fed on a Zn-deficient diet for 28 d were reduced compared with those of control rats. The feed intakes of the Zn-deficient and control groups during the period were 10·2 (SE 0·3) and 15·7 (SE 0·2) g/d respectively. Cyclic variations in feed intake and body-weight changes were found in analysis not only of all the data for five rats but also that in each individual rat. Cosinor analysis revealed that the cyclical period of both the feed intake and body-weight change in the Zn-deficient rats was 3·5 (SE 0·1) d. The mesor and amplitude value of the feed intake in the Zn-deficient rats was 10 1 (SE 0·4) g/d and 3·5 (SE 0·5) g/d respectively, and that of body-weight change was 1·4 (SE 0·1) g/d and 7·9 (SE 1·3) gObihiro d respectively. Among pyrimidine-catabolizing enzymes, dihydropyrimidinase (EC3.5.2.2) activity showed significantretardation in the Zn-deficient rat liver with decrease of the enzyme protein. The ratio of apo-form to holo-form dihydropyrimidinase in the liver was not affected by the Zn-deficient diet.

Type
Effects of dietary zinc deficiency
Copyright
Copyright © The Nutrition Society 1995

References

Bessey, O. A, Lowry, O. H. & Brock, M. J. (1946) A method for rapid determination of alkaline phosphatase with 5 cubic millimeters of serum. Journal of Biological Chemistry 164, 321329.CrossRefGoogle Scholar
Brooks, K. P., Jones, E. A, Kim, B.-D. & Sander, E. G. (1983) Bovine liver dihydropyrimidine amidohydrolase; purification, properties and characterization as a zinc metalloenzyme. Archives of Biochemistry and Biophysics 226, 469483.CrossRefGoogle ScholarPubMed
Brooks, K. P., Kim, B.-D. & Sander, E. G. (1979) Dihydropyrimidine amidohydrolase is a zinc metalloenzyme. Biochimica et Biophysica Acta 570, 213214.CrossRefGoogle ScholarPubMed
Canellakis, E. S. (1956) Pyrimidine metabolism. I. Enzymatic pathways of uracil and thymine degradation. Journal of Biological Chemistry 221, 315322.CrossRefGoogle ScholarPubMed
Chesters, J. K. & Quarterman, J. (1970) Effects of zinc deficiency on food intake and feeding patterns of rats. British Journal of Nutrition 24, 10611069.CrossRefGoogle ScholarPubMed
Chesters, J. K. & Will, M. (1973) Some factors controlling food intake by zinc-deficient rats. British Journal of Nutrition 30, 555566.CrossRefGoogle ScholarPubMed
Dorup, I., Flyvbjerg, A., Everts, M. A. & Clausen, T. (1991) Role of insulin-like growth factor-1 and growth hormone in growth inhibition induced by magnesium and zinc deficiencies. British Journal of Nutrition 66, 505521.CrossRefGoogle ScholarPubMed
Droke, E. A, Spears, J. W., Armstrong, J. D., Kegley, E. B. & Simpson, R. B. (1993) Dietary zinc affects serum concentrations of insulin and insulin-like growth factor I in growing lambs. Journal of Nutrition 123, 1319.CrossRefGoogle ScholarPubMed
Fritzson, P. (1957) The catabolism of C14-labeled uracil, dihydrouracil, and β-ureidopropionic acid in rat liver slices. Journal of Biological Chemistry 226, 223228.CrossRefGoogle ScholarPubMed
Fritzson, P. (1960) Properties and assay of dihydrouracil dehydrogenase of rat liver. Journal of Biological Chemistry 235, 719725.CrossRefGoogle ScholarPubMed
Gingliano, R. & Millward, D. J. (1984) Growth and zinc homeostasis in the severely Zn-deficient rat. British Journal of Nutrition 52, 545560.CrossRefGoogle Scholar
Gingliano, R. & Millward, D. J. (1987) The effects of severe zinc deficiency on protein turnover in muscle and thymus. British Journal of Nutrition 57, 139155.CrossRefGoogle Scholar
Golden, B. E. (1988) Zinc in cell division and tissue growth: physiological aspects. In Zinc in Human Biology, pp. 119128 [Mills, C. F., editor]. Berlin: Springer Verlag.Google Scholar
Halberg, F., Johnson, E. A., Nelson, W., Runge, W. & Sothern, R. (1972) Autorhythmometry-procedures for physiologic self-measurements and their analysis. Physiology Teacher 1, 111.Google Scholar
Kautz, J. & Schnackerz, K. D. (1989) Purification and properties of 5,6-dihydropyrimidine amidohydrolase from calf liver. European Journal of Biochemistry 181, 431435.CrossRefGoogle Scholar
Kikugawa, M., Kaneko, M., Fujimoto-Sakata, S., Maeda, M., Kawasaki, K., Takagi, T. & Tamaki, N. (1994) Purification, characterization and inhibition of dihydropyrimidinase from rat liver. European Journal of Biochemistry 219, 393399.CrossRefGoogle ScholarPubMed
Kramer, T. R., Briske-Anderson, M., Johnson, S. B. & Holman, R. T. (1984) Influence of reduced food intake on polyunsaturated fatty acid metabolism in zinc-deficient rats. Journal of Nutrition 114, 12241230.CrossRefGoogle ScholarPubMed
Kvalnes-Krick, K. L. & Traut, T. W. (1993) Cloning, sequencing, and expression of a cDNA encoding β-alanine synthase from rat liver. Journal of Biological Chemistry 268, 56865693.CrossRefGoogle ScholarPubMed
Lee, M. H., Cowling, R. A., gSander, E. G. & Pettigrew, D. W. (1986) Bovine liver dihydropyrimidine amidohydrolase: pH dependencies of inactivation by chelators and steady-state kinetic properties. Archives of Biochemistry and Biophysics 248, 368378.CrossRefGoogle ScholarPubMed
Lee, M. H., Pettigrew, D. W., Sander, E. G. & Nowak, T. (1987) Bovine liver dihydropyrimidine amidohydrolase: pH dependencies of the steady-state kinetic and proton relaxation rate properties of the Mn(II)-containing enzyme. Archives of Biochemistry and Biophysics 259, 597604.CrossRefGoogle ScholarPubMed
Lowry, O. H., Rosebrough, N. J., Farr, A. L. & Randall, R. J. (1951) Protein measurement with the Folin phenol reagent. Journal of Biological Chemistry 193, 265275.CrossRefGoogle ScholarPubMed
Maguire, J. H. & Dudley, K. H. (1978) Partial purification and characterization of dihydropyrimidinase from calf and rat liver. Drug Metabolism and Disposition 6, 601605.Google ScholarPubMed
Marquardt, D. W. (1963) An algorithm for least-squared estimation of nonlinear parameters. Journal of the Society for Industrial and Applied Mathematics 11, 431441.CrossRefGoogle Scholar
Mentre, F., Steimer, J.-L., Sommadossi, J.-P., Diasio, R. B. & Cano, J.-P. (1984) A mathematical model of the kinetics of 5-fluorouracil and its catabolites in freshly isolated rat hepatocytes. Biochemical Pharmacology 33, 27272732.CrossRefGoogle ScholarPubMed
Mills, C. F., Quarterman, J., Chesters, J. K., Williams, R. B. & Dalgarno, A. G. (1969) Metabolic role of zinc. American Journal of Clinical Nutrition 22, 12401249.CrossRefGoogle ScholarPubMed
Naguib, F. N. M., el Kouni, M. H. & Cha, S. (1985) Enzymes of uracil catabolism in normal and neoplastic human tissues. Cancer Research 45, 54055412.Google ScholarPubMed
Nakagawa, T. & Oyanagi, Y. (1980) Program system SALS for nonlinear least squares fitting in experimental sciences. In Recent Development in Statistical Inference and Data Analysis, pp. 221225. [Matsushita, K., editor]. Amsterdam: North-Holland Publishing Co.Google Scholar
Quinn, P. B., Cremin, F. M., O'Sullivan, V. R., Hewedi, F. M. & Bond, R. J. (1990) The influence of dietary folate supplementation on the incidence of teratogenesis in zinc-deficient rats. British Journal of Nutrition 64, 233243.CrossRefGoogle ScholarPubMed
Sommadossi, J.-P., Gewirtz, D. A., Diasio, R. B., Aubert, C., Cano, J.-P. & Goldman, I. D. (1982) Rapid catabolism of 5-fluorouracil in freshly isolated rat hepatocytes as analyzed by high performance liquid chromatography. Journal of Biological Chemistry 257, 81718176.CrossRefGoogle ScholarPubMed
Tamaki, N., Mizutani, N., Kikugawa, M., Fujimoto, S. & Mizota, C. (1987) Purification and properties of β-ureidopropionase from the rat liver. European Journal of Biochemistry 169, 2126.CrossRefGoogle ScholarPubMed
Wallach, D. P. & Grisolia, S. (1957) The purification and properties of hydropyrimidine hydrase. Journal of Biological Chemistry 226, 277288.CrossRefGoogle ScholarPubMed
Wallwork, J. C., Fosmire, G. J. & Sandstead, H. H. (1981) Effect of zinc deficiency on appetite and plasma amino acid concentrations in the rat. British Journal of Nutrition 45, 127136.CrossRefGoogle ScholarPubMed
Williams, R. B. & Mills, C. F. (1970) The experimental production of zinc deficiency in the rat. British Journal of Nutrition 24, 9891003.CrossRefGoogle ScholarPubMed
Zee-Cheng, K.-Y., Robins, R. K. & Cheng, C. C. (1961) Pyrimidines. III. 5,6-Dihydropyrimidines. Journal of Organic Chemistry 26, 18771884.CrossRefGoogle Scholar