Hostname: page-component-78c5997874-ndw9j Total loading time: 0 Render date: 2024-11-04T17:30:19.871Z Has data issue: false hasContentIssue false

Amino acid absorption and production of pancreatic hormones in non-anaesthetized pigs after duodenal infusions of a milk enzymic hydrolysate or of free amino acids

Published online by Cambridge University Press:  09 March 2007

A. Rérat
Affiliation:
Laboratoire de Physiologie de la Nutrition, INRA, Centre de Recherches de Jouy-en-Josas, 78350 Jouy-en-Josas, France
C. Simoes Nunes
Affiliation:
Laboratoire de Physiologie de la Nutrition, INRA, Centre de Recherches de Jouy-en-Josas, 78350 Jouy-en-Josas, France
F. Mendy
Affiliation:
Laboratoire Sopharga, 5 Rue Bellini, 92806 Puteaux, France
L. Roger
Affiliation:
Laboratoire Sopharga, 5 Rue Bellini, 92806 Puteaux, France
Rights & Permissions [Opens in a new window]

Abstract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

1. Six non-anaesthetized pigs (mean body-weight 57.0 kg) were used to study the intestinal absorption of amino acids (AA) from either an enzymic hydrolysate of milk (PEP) containing a large percentage of small peptides (about 50% with less than five AA residues) and very few free AA (8%), or from a mixture of free AA with an identical pattern (AAL) infused intraduodenally in one of two amounts (55 or 110 g). Concomitant insulin and glucagon production rates were estimated.

2. Each pig was previously fitted, under anaesthesia, with an electromagnetic flow probe. around the portal vein, with permanent catheters in the portal vein, the carotid artery and the duodenum. Each infusion was performed after an 18 h fasting period and each pig received each infusion. The observation period lasted for 5 h.

3. The absorption of AA was greater, more rapid and more homogeneous after PEP infusion than after AAL infusion, independent of the amount infused.

4. For the majority of AA considered individually, the absorption coefficient was higher after infusion of PEP than after that of AAL. The exceptions were methionine with a higher absorption coefficient after AAL infusion, and isoleucine, aspartic acid + asparagine and glutamic acid + glutamine with identical coefficients for both infusions.

5. Some AA, such as asparagine, ornithine, citrulline and taurine, while absent in the infusates, appeared in the portal vein in appreciable amounts after the infusion of both solutions. While a small proportion of taurine may arise from recycling of taurine-containing bile salts, it seems that the gut wall is able to synthesize all four AA.

6. Insulin production did not differ according to the nature or amount of solutions infused. Glucagon production was greater after PEP infusion.

Type
General Nutrition Papers
Copyright
Copyright © The Nutrition Society 1988

References

Atinmo, T. C., Baldijao, C., Houpt, K. A., Pond, W. G. & Barnes, R. H. (1978) Journal of Animal Science 46, 409416.CrossRefGoogle Scholar
Biological Council (1984). Guidelines on the Use of Living Animals in Scientific Investigations. London: Biological Council.Google Scholar
Chung, Y. C., Silk, D. B. A. & Kim, Y. S. (1979) Clinical Science 57, 111.CrossRefGoogle Scholar
Corring, T. (1975) Annales de Biologie Animale, Bzochimie, Biophysique 15, 115118.CrossRefGoogle Scholar
Crampton, R. F., Gangolli, S. D., Simson, P. & Matthews, D. M. (1971) Clinical Science 41, 409417.CrossRefGoogle Scholar
Crampton, R. F., Lis, M. I. & Matthews, D. M. (1973) Clinical Science 44, 583594.CrossRefGoogle Scholar
Eisenstein, A. B., Strack, I., Gallo-Torres, H., Georgiadis, A. I. & Miller, O. N. (1979) American Journal of Physiology 5, E20E27.Google Scholar
Elwyn, D. H., Parikh, H. C. & Shoemaker, W. C. (1968) American Journal of Physiology 215, 12601275.CrossRefGoogle Scholar
Fajans, S. S., Floyd, J. C. Jr, Knopf, R. & Conn, J. W. (1967) Recent Progress on Hormone Research 23, 617662.Google Scholar
Hayes, K. C. (1985) Nutrition Reviews 43, 6570.CrossRefGoogle Scholar
Kim, Y. S., Kim, Y. W. & Sleisenger, M. H. (1974) Biochimica Biophysica Acta 370, 283296.CrossRefGoogle Scholar
Matthews, D. M. & Adibi, S. A. (1976) Gastroenterology 71, 151161.CrossRefGoogle Scholar
Moore, S., Spackman, D. H. & Stein, W. H. (1958) Analytical Chemistry 30, 11851190.CrossRefGoogle Scholar
Rees, R. G., Grimble, G. K., Keohane, P. P., West, M., Spiller, R. C. & Silk, D. B. A. (1984) Gut 25, A547.CrossRefGoogle Scholar
Rérat, A. (1982). In Digestive Physiology in the Pig: Colloques de l'INRA no. 12pp. 6385 [Laplace, J.P., Corring, T. and Rérat, A., editors]. Paris: Institut National de la Recherche Agronomique.Google Scholar
Rérat, A., Chayvialle, J. A., Kandé, J., Vaissade, P., Vaugelade, P. & Bourrier, T. (1985 a) Canadian Journal of Physiology and Pharmacology 63, 15471559.CrossRefGoogle Scholar
Rérat, A., Corring, T. & Laplace, J. P. (1976). In Protein Metabolism and Nutrition, European Association of Animal Production Publication no. 16, pp. 97138 [Cole, D.J. A., Boorman, K. N., Buttery, P. J., Lewis, D., Neale, R. J. and Swan, H., editors]. London: Butterworths.Google Scholar
Rérat, A., Lacroix, M., Simoes Nunes, C., Vaugelade, P. & Vaissade, P. (1984) Bulletin de I'Académie Nationale de Médecine 168, 385391.Google Scholar
Rérat, A., Simoes Nunes, C., Lacroix, M., Vaugelade, P. & Vaissade, P. (1985 b) Comptes Rendus de l' Académie des Sciences 300, 293296.Google Scholar
Rérat, A., Vaissade, P., Vaugelade, P., Robin, D., Robin, P. & Jung, J. (1977). Fifth Internationul Symposium on Amino Acids, Sect. D3, pp. 18,Budapest.Google Scholar
Rérat, A., Vaugelade, P. & Villiers, P. (1980). In Current Concepts of Digestion and Absorption in Pigs, Technical Bulletin no. 3, pp. 177216 [Low, A.G. and Partridge, I. G., editors]. Reading/Ayr: National Institute for Research in Dairing/Hannah Research Institute.Google Scholar
Samols, R. T., Tyler, J. M. & Marks, V. (1972). In Glucagon, Mofecular Physiology, Clinical and Therapeittie Implications, pp. 151173 [Lefevre, J.P. and Unger, R. H., editors]. Oxford: Pergamon Press.Google Scholar
Silk, D. B. A., Clark, M. L., Marrs, T. C., Addison, J. M., Burston, D. & Matthews, D. M. (1975) British Journal of Nutrition 33, 95110.CrossRefGoogle Scholar
Silk, D. B. A., Grimble, G. K. & Rees, R. G. (1985) Proceedings of the Nutrition Society 44, 6372.CrossRefGoogle Scholar
Silk, D. B. A., Hegarty, J. E., Fairclough, P. D. & Clark, M. L. (1982) Annuls of Nutrition and Metabolism 26, 337352.CrossRefGoogle Scholar
Silk, D. B. A., Marrs, T. C., Clegg, K. M., Addison, J. M., Burston, D., Clark, M. L. & Matthews, D. M. (1973) Clinical Science and Molecular Medicine 45, 715716.Google Scholar
Silk, D. B. A., Webb, J. P. W., Lane, A. E., Clark, M. L. & Dawson, A. M. (1974) Gut 15, 444449.CrossRefGoogle Scholar
Simoes Nunes, C., Rérat, A., Vaugelade, P. & Vaissade, P. (1987) Proceedings of the Nutrition Society 46, 102A.Google Scholar
Sleisenger, M. H., Burston, D., Dalrymple, J. A., Wilkinson, S. & Matthews, D. M. (1976) Gastroenterology 71, 7681.CrossRefGoogle Scholar
Snedecor, G. W. & Cochran, W. G. (1967). Statistical Methods. Ames, Iowa: Iowa State University Press.Google Scholar
Unger, R. H., Dobbs, R. E. & Orci, L. (1976) Annual Review of physiology 40, 307343.CrossRefGoogle Scholar
Windmueller, H. G. & Spaeth, A. E. (1976). Archives of Biochemistry and Biophysics 175, 670676.CrossRefGoogle Scholar
Windrnueller, H. G. & Spaeth, A. E. (1980) Journal of Biological Chemistry 255, 107112.CrossRefGoogle Scholar
Yovos, J. G., O'Dorisio, T. M., Pappas, T. N., Cataland, S., Thomas, F. B., Mekhjian, S. H. & Carey, L. C. (1982) American Journal of Physiology 242, E53E58.Google Scholar